NASA Contractor Report 178387

The Computational Structural Mechanics Testbed

Architecture: Volume IV - The Global-Database
Manager GAL-DBM

(3ASA-CR-178387) TEE CCAPBIA1ICEAL §89-16185
STRUCTURAL MECHANICS TESTEED RBCHITECTURE.
YCLUME 4: THE GLCEAL-LATAEASE BAMNAGER

6AL-DBM (Lockheed Missiles ard Space Co.) Unclas
2CE p CSCL 20K G3/39 0189729

Mary A. Wright, Marc E. Regelbrugge, and Carlos A. Felippa

Lockheed Missiles and Space Company, Inc.
Palo Alto, California

Contract NAS1-18444

January 1989

NASA

National Aeronau!.c
Space Admmlstranm

Langley Research Center
Hampton, Virginia 23665-5225

Preface

This Manual describes the late-1986 version of a data manager designed to operate on
global-access data libraries (GALs). Data libraries are components of a global database. A
global database archives data shared by independently executable applications programs,
and survives excution of such programs. The structure of data libraries is hierarchical:
libraries contain datasets, which in turn are collections of records. Records contain the
actual data shared by the applications.

The particular database manager described in this document is called GAL-DBM. The
first version of this manager, known as EZ-GAL, was written in 1980 to support the initial
implementation phase of NICE (Network of Interactive Computational Elements). NICE
is an integrated software system for computational mechanics under development at the
Mechanics and Materials Engineering Laboratory at Lockheed Palo Alto Research Labo-
ratory. NICE consists of architectural utilities and of independently executable programs
called Processors. The architectural utilities support global and local data management,
program-execution control by a command language, and source code maintenance. Op-
erational compatibility is enforced by replicating the global data manager and command
language interpreter in each processor.

GAL-DBM differs from an earlier version named EZ-GAL in that it deals exclusively
with nominal-record capabilities.

© 00 1 O UV e W N =

T O
Gt b W N e O

>

Introduction

Data Libraries

Datasets

Indexed Records

Named Records .

Library Operations

Basic Dataset Operations
Indexed Record Operations
Named Record Operations
Supplemental Operations
Table Information Retrieval
Copy Operations

Text Group Operations
Error Handling

References

Appendices
Glossary .

Index

1
INTRODUCTION

Section 1: INTRODUCTION

§1.1 NICE DATA MANAGEMENT

NICE, an acronym for Network of Interactive Computational Elements, is a database-
coupled, executive-less, integrated software system under development since 1980 at the
Mechanics and Materials Engineering Laboratory at the Lockheed Palo Alto Research
Laboratory. NICE consists of architectural components discussed in ref. 1, and of compu-
tational elements called Processors that perform the useful work.

The NICE Data Management System (NICE-DMS) is one of three architectural com-
ponents, the other two being execution control and source-code maintenance. NICE-DMS
implements advanced techniques for the administration of scientific databases. Compo-
nents of NICE-DMS are shown in Figure 1.1 interacting with other NICE components.
The functional interaction of these components is discussed in §1.2; the following is just
an overview.

NICE-DMS is a layered data management system. The qualifier “layered” means
that the system consists of separable modules, with low-level modules serving higher-level
ones. The two more important modules are in boxes 1 and 2 of Figure 1.1, labeled “I/O
Manager” and “GAL-DBM?”, respectively.

The basic level of NICE-DMS is the Input-Output Manager (IOM), which is imple-
mented as a package of FORTRAN 77 subroutines (complemented by assembly language
subroutines on some computers) called DMGASP. The IOM functions as a modular in-
terface between direct-access storage facilities (disk, core), and higher data management
levels. Inasmuch as the I/O Manager interacts directly with the operating system, it is
machine-dependent; however, this dependence disappears at higher levels. The present
version of the I/O Manager is described in detail in ref. 2.

The present document is primarily concerned with the Global Database Manager part
of NICE-DMS. A global database (GDB) is an organized collection of operational data that
resides on permanent storage devices. These data are used by independently executable but
logically interrelated application programs. Within the confines of the NICE architecture,
these programs are known as Processors.

The NICE global database is constituted by sets of data libraries. The Global Database
Manager of NICE-DMS is a package of FORTRAN 77 subroutines collectively called GAL-
DBM. The main purpose of this Manager is to interface NICE Processors with global access
libraries (GALs). A GAL is a data library that resides on a direct-access device such as
a disk file (or even main storage) and complies with the technical specifications discussed
in Section 2. GAL-DBM implements operations pertaining to the creation, access and
modification of these libraries. The reader interested in a general functional description of
the global database concept is advised to read ref. 3.

1-2

§1.1 NICE DATA MANAGEMENT

Guiding Presence

Box 3

> CLIP

Local Data
Manager

Global Database
Box 2
> Manager GAL-DBM
1
Box > /O Manager DMGASP

Global Database

Figure 1.1. Configuration of a NICE Processor, showing
data management and control components

1-3

Section 1: INTRODUCTION

§1.2 UTILIZATION OF GAL-DBM
§1.2.1. Making Processors Work Together

The essence of a network of data-coupled programs is that the output of one program
becomes the input of another. This is an old idca popularized by the Unix system. NICE
does belong to this very general network class, but it has its own structural and operational
characteristics dictated by its intended application in computational mechanics.

How does GAL-DBM support the development of NICE Processors? This question is
‘hopefully answered in Figure 1.1 which is a graphical representation of a typical Processor.

Processors have to be controlled in some way, and this is shown by a Guiding Presence.
The Presence may be a human user interacting with a Processor, a command procedure
written by a user, or a command procedure written by another Processor. But it is never
a central executive program.

Interposed between the Processor and the Guiding Presence is the Command Lan-
guage Interpreter Program CLIP (box 3 in figure 1.1), which is described in refs. 4-6.
Interposed between the Processor and the global database is the Global Data Manager,
which is shown separated into the GAL-DBM and DMGASP levels.

The Processor structure is shown in detail. A computational kernel is surrounded by a
shell (similar to Unix). The shell contains four overhead components: Command Interface,
Executive, Tester, and Local Data Manager. The construction of these shell components
is left to the discretion of the Processor developer.

The Local Database embodies working data structures needed by the Processor itself
to produce the results required by the Guiding Presence. Most of these data disappears
when the Processor stops. The Local Data Manager is usually designed for maximal
computational efficiency, and often custom-fitted to the Processor.

1-4

§1.3 CONTENTS OUTLINE

§1.3 CONTENTS OUTLINE

Sections 2, 3, 4 and 5 explain data libraries, datasets, indexed records and named records,
respectively. These are the three data structure levels that GAL-DBM manages. Readers
already familiar with data-library systems such as those used in the SPAR and DALPRO
program networks may be able to absorb most of this material fairly quickly. Familiarity
with ref. 2 would also be most helpful.

Section 6 presents library operations: open, close, flush and pack, which affect a data
library as a whole.

Section 7 covers basic operations that affect one or more datasets and that do not
depend on the record structure. For example: put dataset name in TOC (table of contents),
find dataset, delete and enable datasets, list TOC.

Section 8 covers operations on indexed records that reside in positional datasets.
Section 9 covers operations on named records that reside in nominal datasets.

Section 10 covers supplementary and auxiliary operations that do not fit in the pre-
ceding four sections.

Section 11 covers information-retrieval functions.
Section 12 deals with copy operations.
Section 13 deals with text group operations.

Section 14 covers error handling in NICE-DMS in general and GAL-DBM in particu-
lar. It lists and explains error messages, and describes entry points that NICE programmers
may use to access status information and to modify error-handling defaults.

1-5

2
Data Libraries

Section 2: DATA LIBRARIES

§2.1 OVERVIEW
What is a Data Library?

Webster’s 7th Collegiate Dictionary defines a library as “a place in which books,
manuscripts, musical scores, or other literary and artistic materials are kept for use but
not for sale”. The pessimist’s view of a library has been quoted as “an organized collection
of obsolete materials”. However, the term library, or more precisely data library, is used
here in a more specialized context. A library is an organized collection of data that
possesses the following attributes:

1. It is intended (at least in principle) for use by independently executable programs.
2. It can be made available to a running program as a single logical entity.

3. It is oriented to the archival of data, rather than to the processing of data.

4. It provides at least one level of named access to the stored data and preferably more.

5. It is context-free, t.e., no assumption as to the meaning of the stored data is made.

The qualifier data in data library is occasionally used to reinforce the distinction be-
tween data libraries and program libraries. The principal function of a program library is
to catalogue source-code, object-code, or executable-code text. Program libraries are usu-
ally handled through operating-system utilities whereas data libraries are handled through
application-oriented data management systems.

The chief function of data libraries is to serve as components of global databases.
These are organized collections of information that are used as operational data for the
applications system of a particular enterprise (e.g., engineering analysis). Global database
information is shared by functionally related but independently executable programs, and
survives the execution of such programs. In a top-down description of scientific database
structures, a data library may be defined as “a named partition of a database” (see ref. 5).

Nomenclature

Data libraries can be categorized according to the access characteristics of their residence
medium into direct-access and sequential-access librartes. Direct-access librartes reside on
direct-access storage devices such as disk or main-storage. Sequential-access libraries reside
on serial-access devices such as magnetic tape.

All library organizations discussed in this document are of direct-access type. The use of
direct-access online devices as a residence medium provides maximum operational flexi-
bility, and is consistent with current computing industry practices. It should be noted,
however, that permanent library files may (and should) be archived on tape during pro-
longed inactivity periods.

A data library contains data objects identified by naries or numbers. Such data objects
are the members or elements of a library. In the library organizations considered here, the

2-2

)

§2.1 OVERVIEW

data structures associated with an individual member are either single records or sets of
records. The term dataset (IBM-originated “computerese” for a collection of similar records
related by spatial or temporal adjacency) will be used to describe such data structures.

Dataset description information such as identifiers, physical location and so on is
usually abstracted into a special section of the data library known as an index, directory,
catalog, data dictionary, or root segment. This section is usually implemented as a table
(a matrix-like arrangement of information), which is then called the Table Of Contents or
TOC.

The main reason for abstracting dataset information from the dataset records proper
is efficiency in library-query operations. TOC segments can be brought to main storage
through block-read operations and then searched at high speed. (The reader may think of
the analogous situation in which a person tries to find a book in a public library: scanning
an index is more efficient than walking through book stacks.)

The remainder of Section 2 is devoted to the description of the specific data library
organizations processed by the GAL-DBM package, and to which the operations discussed
in §§6-14 pertain.

Section 2: DATA LIBRARIES

§2.2 A CONCEPTUAL MODEL

To understand how GAL-DBM works, a conceptual model of data libraries is useful. Think
of a data library as a bookshelf. The datasets are the books, and the dataset names are
the book titles. For a data library containing three datasets: DENNIS, NELL, EDNA, this
simple model can be diagrammed as:

DENNIS

Dataset DENNIS
NELL

Dataset NELL
EDNA

Dataset EDNA

in which the distinction between the dataset name (the book title} and the dataset proper
has been emphasized.

Now, what is a dataset proper? It is a collection of records. We shall define “record”
precisely in §4.1; for the moment you may think of records as book chapters. But how are
chapters identified?

In some books, chapters are merely identified by an index: 1, 2, 3, and so on, with
perhaps a Preface, Introduction or Foreword which may be collectively called Chapter 0.
On other books, you will find chapters identified by a name related to the subject matter.
There is a close analogy for datasets. More precisely, datasets may be of two types:
positional and nominal.

Positional Datasets. Records are identified by their sequence index: 0, 1, 2, ... Records
must be physically contiguous; that is, record 2 must immediately follow record 1, and so
on. Record 0 is called the descriptor record; its presence in a dataset is optional.

Nominal Datasets. Each record is identified by a name. The physical order in which
records appear in the library is irrelevant. Most new software developments make use of
nominal datasets exclusively.

2-4

§2.2 A CONCEPTUAL MODEL

To continue the example, suppose that that dataset EDNA contains five named records
identified as LEON, NEDRA, ANITA, ROLF and NORA:

EDNA

LEQN

Record LEON
NEDRA

Record NEDRA
ANITA

Record ANITA
ROLF

Record ROLF
NORA

Record NORA

Note that for dataset EDNA we have again emphasize the distinction between the record
name and the actual record.

Can we go deeper? Book chapters are composed of paragraphs, which are composed of
words. A word is the smallest component of our conceptual model, because if we break up
a word into letters it loses meaning. The global-database counterparts to paragraphs and
words are called data aggregates and data items, respectively. (In some cases, the aggregate
level is missing or cannot be discerned.) Example: a full rectangular matrix is stored as
a single dataset record; then the matrix columns are data aggregates while matrix entries
are data items. Now if the matrix collapses to a row vector, aggregates collapse into items.

GAL-DBM is blind to aggregates and items. That is, the finest structure it can see is
the record and it is blind to aggregates and items; these levels being of interest primarily
to local data managers. All of this can be concisely expressed by saying that a GAL-DBM
database has record granularity.

REMARK 2.1

The term dataset, in its original meaning, should strictly apply only to positional datasets, the
records of which are related by physical adjacency. The proper name for nominal dataset is
group, which is “a collection of records endowed with an owner or master record called the record
directory, and a set of member records” (see ref. 5). But using different terminology for logically
similar things tends to confuse users to no end. Purism has to give way to common sense, and so
dataset is used. Besides, this frees the term “group” for use in describing a special amalgamation
of named records in §5.

Section 2: DATA LIBRARIES

§2.3 LIBRARY DEVICES

Data libraries reside on logical storage devices under control of the 1/O Manager DMGASP (cf.
Figure 1.1). Most library devices are disk-resident perinanent files, which naturally provide the
permanency and direct-access attributes stressed in §2.1. But, as noted in §1.2, libraries can also
reside on scratch devices to fulfill special needs.

The physical structure of library devices is outlined in §2.5, which should be of interest only
to a minority of advanced users. In the following, only logical aspects are covered.

Library Identification

A data library has two identifiers: a name and a number. The nominal identifier is the ezternal
device name of the DMGASP device on which it resides. If the device is a permanent disk file,
the device name either coincides with the file name, or it contains the file name in some fashion.
For details the reader is referred to §2.6 and §3.1 of ref. 2.

The other identifier is the Logical Device Indez (LDI) of DMGASP (see ref. 2). This is an
integer in the range 1 through 30, which is linked to the external name when the library device is
opened. The choice of LDI is arbitrary, but once selected, all subsequent references to the library
are made through the LDI.

REMARK 2.2

GAL-DBM maintains a table of active libraries. The access pointer to this table is the logical ltbrary
indez (LLI). This index is only used internally, however, and is invisible to the user program. The
decision of concealing the LLI was made to avoid confusing GAL-DBM programmers with the
task of keeping track of several indices: one is enough. Furthermore, advanced programmers may
sometimes want to access a library device at the I/O Manager level (e.g., for a file dump); a
common identifier is then beneficial.

Library Format

The present GAL-DBM can process three data library formats or libforms. These are
identified as DAL, GAL80 and GALB82, respectively. The main characteristics of these
libforms are summarized in Table 2.1.

The library form is established when a library file is created and cannot be changed
afterwards. When an existing library is accessed, GAL-DBM can “sense” its form by
scanning the library header.

DAL libforms are provided for compatibility with the DAL database. These libraries
can reside only on disk files, are sector-addressable, and can accommodate only DAL-
conforming datasets (a special positional dataset consisting of fixed-length records). Be-
cause of these restrictions, DAL libraries are not suitable for use by NICE processors, but
do serve as a bridge to programs supported by DAL databases.

GAL libforms reside on word-addressable devices (disk files or core). The GAL80 form
was provided by the original version of GAL-DBM; it can hold only positional datasets.
The GALS82 form is provided by the present version and can hold nominal datasets.

2-6

§2.3 LIBRARY DEVICES

Table 2.1. Libforms Processable by GAL-DBM

Format Addressing Residence Datasets Comments
Unit Medium Accepted
DAL Sector Disk DAL-conforming Compatible with
positional SPAR and DALPRO
GALS8O Word Disk or core Positional Original GAL
GALS2 Word Disk or core Nominal Latest GAL

2-7

Section 2: DATA LIBRARIES

§2.4 LIBRARY ACTIVITY OVERVIEW
Activation

GAL-DBM demands that any library to be made available to the user program be explicitly
opened. The open operation, performed by GMOPEN (§6.4), connects a Logical Device
Index to the external device name, and prepares the library for processing. An open library
is said to be active.

If the library did not exist before the open operation, the open operation effectively
combines creation and opening. A created library may be declared to be permanent if it
is to survive closing (the most common case), or scratch if it is to disappear upon closing.

Although the Logical Device Index (LDI) ranges from 1 through 30, this does not

mean that up to 30 libraries may be open at the same time. The present GAL-DBM
allows up to eight libraries to be simultaneously active.

Write Protection

The access characteristics of the library are those of its resident device. The most com-
mon access restriction consists of making an existing library read-only. Some old-fashioned
operating systems allow catalogued disk files to be declared read-only, so the file is uncon-

ditionally protected against all users. More modern operating systems, such as VAX/VMS,
allow rings of selective protection.

But even if your host operating system does not provide write protection, read-only
status can be specified at open time as explained in §3.1 of ref. 2. If so, the I/O Manager
will disallow writes against the device.

Run-Abort Protection

The flush-library operation, performed by GMFLUB (§6.3), is used to safeguard new or
modified libraries against abnormal run termination. This operation forces all core-resident
buffers whose alterflag is on to be written to the library device.

Packing

Libraries used by heavily interactive programs such as pre- and post-processors tend to
accumulate inaccessible datasets in the form of deleted datasets (§3.4). Library storage
may be reclaimed by a pack operation, which is performed by invoking GMPACK (§6.5).

Deactivation

Once the user program is through (permanently or temporarily) with a library, it should
release it with a close operation, which is performed by GMCLOS (§6.2). A close operation
automatically flushes all main-storage buffers assigned to the library.

2-8

§2.5 PHYSICAL ORGANIZATION

§2.6 PHYSICAL ORGANIZATION

A data library is usually stored as a permanent file on disk. Such files survive processor
execution and thus provide the operational continuity expected from global databases.

The qualifier “usually” means that there are exceptions to the library-storage rule. A
library of any type can reside on a scratch disk file, which disappears when it is closed.
And libraries of GAL form can even reside on “core devices” provided by DMGASP in
blank-common storage. Regardless of storage medium, a library is a hierarchical indezed
organization. It contains at least two overhead data structures: a Library Header and the
Table of Contents. (“Overhead” means that it is used only for internal administration.) In
GALS82 libraries holding nominal datasets, a third overhead data structure appears: the
Record Access Table (RAT), of which there is one per nominal dataset.

Library Header

The Library Header occupies the first 128 (64) words of the GAL (DAL) device. A short
segment of the Header maintains state information such as the length of the library de-
vice, library format codes, and so on. The remainder contains the addresses of the TOC
segments.

When an existing library is open, its header segment is read into a core-resident header
buffer area, where it resides until the library is closed. If a header item changes as a result
of an operation (e.g., a TOC segment is created) the buf er is modified and an “alter flag”
is set. Periodically the modified buffer is written (“flushed”) to the actual library, and the
alter flag cleared.

Table Of Contents

The Table Of Contents (TOC) maintains information about datasets. For example: dataset
name, date and time of creation, dataset start location, number of records. and so on.

The TOC is not stored contiguously, but is subdivided into segments. Each segment
is 384 words long and stores information about 16 (32) datasets in GAL (DAL) forms.

To process TOC segments, GAL-DBM maintains a TOC Buffer Pool in main storage
with capacity for 2 to 4 segments (this number is declared as a FORTRAN PARAMETER
at compile time). This (RAT) Buffer Pool is shared by all active libraries. Pool frames are
allocated on demand using a LRU (Least Recently Used) paging policy. Segments altered
as a result of database operations are marked as modified but not written back (“flushed”)
to the library until it becomes necessary to do so.

Record Access Tables

Each nominal dataset on a GAL82 library has a Recorc Access Table (RAT). The RAT
configuration mimics that of the Library-Header/Table-Of-Contents pair. More specifi-
cally, the RAT is subdivided into 128-word segments; the segment addresses are stored in
a RAT header that appears in front of the first segmen . Each segment has information
about 16 record entries (one ordinary record, or a recorc¢ group).

2-9

Sectlon 2: DATA LIBRARIES

To process RAT contents, GAL-DBM maintains a RAT Buffer Pool in main storage
with capacity for 4 to 8 RAT segments. The Buffer Pool resources are shared by all active
GALS?2 libraries and all nominal datasets present in such libraries. As in the case of the
RAT Buffer Pool, RAT segment frames are allocated on demand, using a LRU policy.
Modified segments are alter-flag tagged, and not written back to the library device until
necessary.

Dataset Storage

Indexed-record datasets occupy a contiguous area of the library device. So given the start
of the dataset allocation, which is kept in the TOC, the location of a member record can be
rapidly calculated if the record offset with respect to the dataset start is known. For record
sets satisfying certain length constraints discussed in §4.2, the offset can be determined
solely from TOC-stored information.

For nominal datasets, one more level is required. The dataset location field in the
TOC points to the RAT Header, which holds locations of RAT segments. The location of
a member record can be calculated from the base address and the item type and length
information maintained in the RAT. This two-level addressing scheme allows member
records to be physically anywhere in the library.

2-10

3
Datasets

Section 3: DATASETS

§3.1 INDIVIDUAL DATASET IDENTIFICATION
Dataset Names

Datasets are identified by character strings known as dataset names. In its most general
form, a dataset name consists of five components:

Mainkey. Extension.cyclel.cycle2.cycle$

where any component but the first may be omitted. Components are separated by periods.
Examples:

MATRIX

A.B.1.3.2
S4-C1.ASM-STIF(G).3.65.1307
HELP .ADD

$TEMP$.BUFFER(+8) .. .4
RESPONSE. .45

The total length of the name string, including connecting periods, must not exceed 40
characters.

REMARK 3.1

Two character key {alphanumeric) components and three integer cycle components are provided
for maximum generality and flexibility in the naming of datasets.

Keys

The first two dataset-name components: mainkey and Fey extension, may contain any of
the following characters:

letters A-Z, a-z

digits 0-9

dollar signs

plus and minus signs

left and right parentheses
underscore

Each key component, excluding connecting periods, is restricted to 16 characters. The key
extension may be omitted, as in the first and last examoles above. An omitted extension
is conventionally the same as a blank character string.

§3.1 INDIVIDUAL DATASET IDENTIFICATION

REMARK 3.2
Key extensions that consist only of digits are permitted. For example:

MODE . 139

Here 139 is a key extension, although it looks like a cycle number; it is not the same as MODE..139.
To avoid confusing the poor user (or even yourself), please avoid all-digit keys.

REMARK 3.3

Upper and lower case characters are not equivalent. For NICE processors, the use of lower case
characters in dataset names should be avoided, since the command interpreter CLIP normally
converts automatically all character strings to upper case. Consequently, using lower case would
impair the usefulness of command specifications that contain dataset names.

Cycle Numbers

The last three name components are called cycle numbers. As this term implies, a cycle
is a sequence of digits that represents an unsigned integer in the range 0 through 99999.
Any omitted cycle is assumed zero. Example:

ELEM.STIF.457

The first cycle is 457; the second and third cycles are z:ro. Similarly, AA.BB is the same
as AA.BB.0.0.0.

Cycle numbers are primarily used for identifying datasets that differ only slightly,
when such difference can be naturally associated with one index, an index pair, or an

index triplet.

Section 3: DATASETS

§3.2 MULTIPLE DATASET IDENTIFICATION

Certain library operations such as copy, delete, globally-match, list TOC, and print records,
may affect more than one dataset. For such operations, it is often useful to be able
to “bundle” together dataset names that are to participate in the operation. It is also
occasionally useful to refer to things such as “the highest defined cycle number”.

To facilitate these requirements, GAL-DBM provides masking, cycle range, and rela-
tive cycle capabilities. These are summarized in Table 3.1, and explained in the following
subsections.

Name Component Masking

The simplest multiple-name-matching feature is component masking, in which a full name
component is skipped when comparing against stored dataset names. This can be done
with a “wild card” specification, in which a name component is replaced by an asterisk.

Example:
DATA % .%.2

This matches any identifier whose mainkey is DATA and last two cycles are 2 and 0. For
example:

DATA .EP0XY.33.2
DATA..120.2
DATA...2

If the name ends with an asterisk, t.e., the next character is a blank, everything that
follows is masked. This is a special case of the trailing-asterisk rules stated below.

Partial Key Masking

More general masking specifications are possible on the mainkey and key-extension com-
ponents. These work much like file name masking in the VAX/VMS operating system.
The most common specification involves the use of a trailing asterisk to match name com-
ponents with the same “root”. For example:

Fx RUIl. 34

This name matches all datasets whose mainkey begins with F, followed by key extension
RUN, and cycles 34, 0, and 0.

A name-trailing asterisk (i.e., the next character is a blank) specifies matching against
any combination of zero or more trailing characters. For example,

Fx

3-4

§3.2 MULTIPLE DATASET IDENTIFICATION

matches all datasets whose mainkey begins with F, and
x, GAx

matches any dataset whose key extension begins with GA. Please note that this is not the
same as

,GA .

which specifies zero cycle numbers. Thus, FUN.GAMES. 3.4 is matched by the first form but
not by the second.

In view of the trailing-asterisk rule, the five specifications

are effectively identical, and match all dataset names.

Leading asterisks are occasionally useful. For example,
RUN.*RE. %

matches all datasets whose mainkey is RUN and whose key extension ends with RE; e.g.,
RUN.PROCEDURE or RUN.RE.67.8. The specification

matches all datasets whose key extension contains the letter X in any position.

REMARK 3.4

Asterisks which are neither trailing nor leading a key component (7.e., an embedded asterisk) are
not allowed. For example, NEW.ADV+LAM.6 is illegal.

Positional Masking

Individual characters at specific positions can be masked with the percent sign %, exactly
as in VAX/VMS. For example:

DYN .RESP%} . *

matches any dataset with mainkey DYN and six-character key extensions beginning with
RESP, e.g., DYN.RESPON.5 or DYN.RESP0O2. Note the diffcrence with

DYN.RESP* .+

35

Section 3: DATASETS

which matches zero or more characters after RESP. For example,
DYN .RESPONSE

is matched by the second form, but not by the first one.

Cycle Ranges

Partial masking does not carry over to name cycles. For example

RUN.SET.67+*

is meaningless, and will cause an error message to be printed. To match cycles that lie in
a certain interval, the cycle range feature may be used. Example:

RUN.SET.4:67

matches datasets of the form

RUN.SET. cyclel

in which cyclel is 4 through 67 (inclusive). Cycle-range specifications may appear in more
than one cycle, as in

RUN.SET.4:67.93.0:8

REMARK 3.5

The single asterisk specification in a cycle component is equivalent to the “match all” cycle range
specification 0:99999.

Relative Cycle Specifications

In contexts where heavy use is made of cycle numbers, it is often useful to have compact
ways of referencing things like “highest cycle number” or “next cycle number”. GAL-DBM
provides three letter symbols: L, H and N, that can app:ar as first character in one cycle
field to form a relative cycle specification. The meaning is:

L Lowest cycle number
H Highest cycle number
i Next cycle number (same as H+1)

These symbols may be optionally followed by a signed integer, as in

L+2 Lowest cycle plus 2
H-12 Highest cycle minus 12

3-6

§3.2 MULTIPLE DATASET IDENTIFICATION

To determine the numeric value of L, H or N, GAL-DBM does a TOC scan with the affected
cycle field replaced by a mask. The appropriate value is substituted in an internal name
string. If no match is made, L and H are conventionally set to zero whereas N is set to one.

Relative cycles may be combined with cycle-range specifications. The following are
legal:
AA.BB.6.L:H
AA.BB.*.L+3:H-2

Relative specifications may not appear on more than one cycle component, however. Ac-
cordingly, the name

AA.BB.H.L+3

is illegal and will cause an error condition.

A common application of relative cycles is illustrated by the following example. A
+ NICE processor creates results in a step-wise manner, and stores them in datasets named

RESULT.VEC.1
RESULT.VEC.2
RESULT.VEC.3

etc.

so that the first cycle identifies the step number. After completing the 32nd step, say, the
program creates the next receiving dataset using the name

RESULT.VEC.N

On receiving a name of this form, GAL-DBM scans the TOC for all datasets named
RESULT.VEC.cyclel.0.0, finds out that the highest cyclel is 31, adds one to produce 32,
and so the dataset name winds up being RESULT.VEC.32.

Finally, suppose that the program is instructed to print the last three result datasets in
the data library. The appropriate identifier is

RESULT.VEC.H-2:H

3-7

Section 3: DATASETS

Table 3.1. Special Dataset Name Constructs

Name Form Effect
component

Key * Matches zero or more arbitrary characters

Key % Matches one arbitrary character

Cycle * Matches any cycle number (same as
0:99999)

Cycle ny:ing Matches cycle numbers in range
ny to ng inclusive

Cycle H+n or H-n H is to be replaced by highest cycle number
(zero if none found)

Cycle L+n or L-n L is to be replaced by lowest cycle number
(zero if none found)

Cycle N+n or N-n N is to be replaced by next cycle number

(same as H+1)

§3.3 IDENTIFICATION BY SEQUENCE NUMBER

§3.3 IDENTIFICATION BY SEQUENCE NUMBER

Each dataset, whether enabled or deleted (§3.4), has a unique sequence number, which is
the ordinal of its occurrence in the data library. Once a dataset is entered in a library, its
sequence number cannot change unless the library is packed.

Most GAL-DBM operations identify a dataset by its sequence number rather than by

name. This has the following advantages:

1.

4.

No search of the library Table of Contents is required. Such a search can be expensive
in terms of CPU time and I/O accesses when a library contains over 100 datasets.

Datasets with identical names may be told apart, which is useful for “undelete” or
“copy deleted” operations. :

Sequence number range specifications may be given. These are handy for requests
such as “list the last 10 dataset names”.

In interactive command input, small integers can be typed faster than long names.

Connections between names and sequence numbers are usually established through “find
name” search operations.

3-9

Section 3: DATASETS

§3.4 DATASET STATES

During its lifetime, a stored dataset may be in one of three states:

Enabled unlocked. A dataset can be accessed and operated upon with no restrictions of
any kind.

Enabled locked. A dataset flagged with access or use constraints (more details below).

Deleted. A deleted dataset is physically present in the data library, but is “transparent”
as regards “find” operations. A deleted dataset cannot be directly operated upon. It can
be rendered accessible only through an explicit “undelete” (enable) operation.

Locking

Access restrictions on enabled datasets may be specified by the user program through a
lock code, which is maintained in the TOC. The lock code of an unlocked dataset has a zero
value, which is the default state, while nonzero values are used to define various protection
levels. Please refer to Table 3.2 for a detailed explanation.

Two situations in which locking is useful should be mentioned.

Questionable data.. A dataset may be produced under abnormal conditions; for example
an iterative solution process may fail to converge, but the last iterate is saved anyway. A
lock code of -1 (cf. Table 3.2) comes handy in this situation.

Be prepared. A NICE processor may want to safeguard valuable information stored in
certain datasets by protecting them against write-in-place, extend or delete operations
performed by itself or by other NICE processors.

REMARK 3.6

The lock code feature has not been fully implemented.

Deletion

The most common source of deleted datasets is the insertion of a dataset name that
duplicates an existing name. The general rule is: names of enabled datasets must be
unique. For example, suppose that dataset DENNIS is entered thrice in a library. The
logical configuration would then be

*DENNIS

Dataset DENNIS
*DENNIS

Dataset DENNIS
DENNIS

Dataset DENRIS

in which asterisks flag deleted datasets. If now the user program “undeletes” (enables) the
first dataset, the third one is automatically marked as deleted because of the uniqueness

rule.

3-10

§3.4 DATASET STATES

Table 3.2. Dataset Lock Codes

Lock Protection Ezplanation
code level } e
0 None Dataset may be extended, rewritten or deleted
1 Read-only Dataset may be deleted, but not extended or
rewritten
2 Undeletable Dataset cannot be extended, rewritten or
deleted :
3 Untouchable Same as 2 and in addition a lock code can

be subsequently lowered (to 0, 1 or 2) only
by the generating processor. More precisely,
the processor name declared through GMSIGN
must match that stored in the TOC for a lower
protection level be installable

-1 Warning message Same as 1 and in addition a warning message
is printed each time dataset records are read.
Useful for flagging erroneous data stored in the
global database.

3-11

Section 3: DATASETS

§3.5 DATASET ACTIVITY
Dataset Creation

A dataset is created in a library by a put name operation, which installs the dataset entry
in the TOC. If the dataset is of nominal type, the operation also creates the first segment
of its Record Access Table (RAT) and its Header.

For a positional dataset, the put-name operation is often followed by a reserve-space
request, which sets aside enough space to hold all of the dataset records. For nominal
datasets, this is never necessary.

Record Transmission

This topic is covered in §4 and §5.

Dataset Deletion

To explicitly get rid of a dataset, a two-step process is necessary. First, the dataset must

be marked as deleted. Then the library is packed. The second step physically removes the
space used by the dataset. In practice, the library-packing step is done only occasionally,

as it is quite expensive.

3-12

4
Indexed Records

4-1

Section 4: INDEXED RECORDS

Data libraries are collections of datasets, and datasets are collections of records. Records
hold the applications data that feeds Processors. As noted in §2.2, GAL-DBM has es-
sentially record granularity; so this Manual does not contain sections explaining data
aggregates and items.

This Section deals with aspects of global data management related to the record struc-
ture of datasets. §4.1 gives an overview of what records are and how record identification
characterize datasets and libraries into positional and nominal. Then §§4.2-4.3 give further
details on indexed records in positional datasets. Named records are discussed in §5.

§4.1 OVERVIEW

§4.1 OVERVIEW
Definition

The technical definition of dataset record is

A string of data objects that occupies adjacent locations in the library device,
belongs to one and only one dataset, and is identified by number or by name.

Grasping the concept of “adjacent locations” requires familiarity with the physical
structure of direct-access devices (as explained, for example, in §2 of ref. 2). The GAL-
DBM programmer is generally more interested in the functional characterization:

A dataset record is a string of data that belongs to one and only one dataset,
is identified by number or name, and can be read into main storage as a gapless,
undivided whole.

This is a more useful characterization. Basically, the GAL-DBM programmer wants
to say “write record”, and the record goes away, and then “read record” and the record
comes back unspoiled (PL/1 and Pascal programmers may think of “put” and “get”, but
the effect is the same).

REMARK 4.1

The functional definition does not imply that a dataset record is stored in a single write operation,
although that is often the case. A long indexed record may be built “by chunks” provided that no
gaps can occur between the chunks. In more technical terms, the chunks are called record blocks,
and a dataset record built in this fashion is called a block-spanning record, or spanning record for
short.

REMARK 4.2

Dataset records do not have any end-of-record marks. This is in line with the philosophy of
viewing direct-access devices as simply a linear array of storage locations.

REMARK 4.3

Users of the I/O Manager (IOM) DMGASP may wonder about. the relation between TOM records
and dataset records. The answer is that each dataset record is built up of one or more IOM records
(which is not at all surprising, since GAL-DBM channels all physical I/O through DMGASP).
But the converse is not true. Dataset records are closer to the logical level than IOM records.

§4.1.2. Classification

It was noted in §2.2 that there are two ways of identifying dataset records:

1. Indexed records are physically contiguous, and are identified by sequence number.

2. Named records need not be physically contiguous, and are identified by name.

4-3

Section 4: INDEXED RECORDS

Indexed and named records may not be mixed within the same dataset or even the same
library. Consequently, datasets and libraries are naturally categorized into two types:
positional and nominal. The type is selected when the library is created, and cannot be
changed afterwards.

For a positional dataset, the physical order of records usually corresponds to the
chronological order of acceptance of those records by the data manager. Accordingly, the
record identification is intimately related to the definition order. On the other hand, for a
nominal dataset the order in which records are defined is irrelevant.

The operational characteristics of positional datasets are discussed in the following
subsections. Positional datasets should be used only by programs that are to maintain some
form of compatibility with DAL databases. Otherwise, the nominal-dataset organization
should be preferred, as it offers more flexibility and growth potential.

§4.2 POSITIONAL DATASETS

§4.2 POSITIONAL DATASETS

The adjective that best describes a positional dataset is tape-like. Records are defined by
their position within the dataset, and are physically contiguous. Once the next dataset is
installed, a positional dataset cannot be further expanded unless sufficient space has been
reserved in advance.

The most important types of positional datasets are those called DAL-conforming and
GAL-conforming, respectively, which are described below.

DAL-Conforming Datasets

A DAL-conforming dataset is an indexed-record stream that meets the f(;'liowing conditions.

1. All records, with the possible exception of the last one, have the same length. The
length of the last record may be equal to or smaller than the others.

2. There is no descriptor record.
3. Records contain items of identical type. (See Remark 4.4).

To illustrate these rules, consider a dataset that consists of six floating-point records whose
lengths are 60, 60, 60, 60, 60 and 42 words. This is a DAL-conforming dataset. If the size
of the last records were 61 words or more, it would not qualify. If the first record contained
integers, it would not qualify either.

The internal contents of these datasets is fully described by the type code stored in
the library Table of Contents (shown under “T” in TOC listings). The type code is an
integer that may assume the values listed in Table 4.1.

DAL-conforming datasets are accepted by progr_amé that make use of DAL files for
local or global data management. At the Lockheed Palo Alto Research Laboratory, these
programs include DALPRO, NEPSAP, and SPAR.

- DAL compatibility means that these datasets can be copied to DAL files, processed
by utility programs such as DALPRO, and copied back to GAL files without critical loss
of information. Content homogeneity implies that they are comparatively easy to move
from one computer to another, inasmuch as item-by-item conversion is simplified.

REMARK 4.4

The homogenous-data-type rule is largely enforced within the DALPRO program, which deals
primarily with rectangular matrix structures. However, many datasets used by the SPAR network
do violate the rule.

Text Datasets

These are special DAL-conforming datasets that store card image data. They are identified
by DAL type codes 5 and 6 (Table 4.1). Both types are extensively used by the command
interpreter CLIP (see refs. 1, 4-6) to store command procedures, and CLAMP scripts.

4-5

Section 4: INDEXED RECORDS

Table 4.1. Datatype Codes for DAL-Conforming Datasets

Code Data type of record items

0 integer
+1 single-precision real
+2 double-precision real
+3 single-precision complex

+4 alphanumeric (SPAR format)

+5 variable-length-line card images
(DALPRO format)

+6 fixed-length-line card images
(DALPRO format)

7-9 reserved for DALPRO use

10-higher available to DAL programmers

5J

84.2 POSITIONAL DATASETS

Data type 5 stores variable-length card images. All rightmost blanks are stripped and
a character counter is stored in front of each image. These images are blocked into records
of equal size (usually 256 or 512 bytes). This storage arrangement is space-efficient but not
suitable for random access of individual images. It is used for CLIP command procedures,
CLIP ADD elements, and DALPRO runstreams.

Data type 6 stores fixed-length card images (80 characters), one image per record. This
arrangement is space wasteful, but simplifies random access to individual card images. It
is used for the “compiled form” of CLIP command procedures, in which the random access
feature is necessary to take care of branching to labeled commands.

GAL-Conforming Positional Datasets

A GAL-conforming positional dataset is a stream of indexed records that complies with
the following rules. '

1. The first, second, third and last record lengths may be different from the others. The
fourth through the next-to-last record must have 1he same length. Obviously, any
dataset with five records or less satisfies this constraint.

2. A character descriptor record (record 0) of arbitrary length is permitted.

3. Each record must be either numeric or character. Mixing of character and numeric
data within the same record is forbidden.

4. Mixing of different numeric data types within the same record (fdr example, integers
and floating-point numbers) is permitted but discouraged.

As an example, consider a 162-record dataset that consists of

Descriptor: 120 characters
Record 1: 20 integers
Record 2: 240 reals
Record 3: 144 integers
Records 4-161: 642 double-precision floats -
Record 162: 288 reals

This is a GAL-conforming dataset.

The record-length rule is the most important one. It aliows the location and size of each
record to be calculated from information stored in the Table of Contents. This information
includes: location, total dataset size, length of descriptor, first, second, third, and last
record. The common length of the fourth-through-next-to-last records, if any, is obtained
by subtracting the sum of other record lengths from the total dataset size (descriptor
excluded) and dividing by the number of records minus four.

4-7

Section 4: INDEXED RECORDS

The length of numeric records, which form the overwhelining majority, is always ex-
pressed in machine words. The length of character records is expressed in characters, but
internally they are blank-filled to the next machine word boundary.

Because of their greater generality, GAL-conforming positional datasets rely on the
descriptor record and leading control records for self-description. This descriptive infor-
mation, however, has to be interpreted outside GAL-DBM, which leads to problems (see
Context sensitivity below).

GAL-conforming datasets provide more operational flexibility than DAL-conforming
ones. The global manager is still able to access any dataset record with minimal overhead,
simply from TOC-stored information.

REMARK 4.5

The NIFTY-formatting conventions are based on the notion of templates (see reference 7). A
template is the storage layout of a GAL-conforming positional dataset proven useful for various
applications. Template datasets do have reserved leading records called control packets, which
store data that describe the logical structure of the records that follow.

Assessment

Advantages of positional datasets center on processing efficiency. In particular:

Low storage overhead. For a positional dataset, the only storage overhead is its TOC
entry, which amounts to 24 words for GAL forms, and 12 words for DAL forms, respectively.
This overhead is independent of the number of stored records.

Low access overhead. If the dataset sequence number is known, as is the case in most
read/write sequences, any record can be accessed with at most two logical device accesses:
one to get the pertinent TOC segment into main storage, and another to get the actual
record. If the TOC segment happens to be in the TOC Buffer Pool, only one logical access
is required. (The number of physical accesses at the I/O Manager level may be less or more
than this, depending on whether the library device is paged or not, record alignments, etc.)

Multirecord access. Several adjacent records can be read in one call, thereby further
reducing access overhead. (This is restricted to word-addressable GAL libforms however,
because in a DAL file, gaps can appear between records.)

DAL compatibility. DAL-conforming datasets provide a useful bridge to the SPAR
and DALPRO programs, and their rich set of utilities (e.g., graphics packages).

Disadvantages of positional datasets center on their proximity to the physical storage level.
More specifically:

Ordering Sensitivity. The tape-like character makes positional datasets difficult to set
up should records be generated in non-sequential order. Ior example, suppose that record

4-8

§4.2 POSITIONAL DATASETS

2 is the first one generated by the processor. Then appropriate space for the descriptor
and record 1 has to be reserved by writing dummy records.

Extension Difficulties. Appending records is easy if the dataset is the last one in the
library. If not, sufficient space has to be reserved in advance to allow worst-case expansion.
For volatile datasets (those whose final size cannot be closely predicted in advance), this
can be a serious problem.

Lack of Internal Self-Description. The generality of GAL-conforming datasets cou-
pled with limited TOC space means that knowledge about data type (such as precision
information) has to be kept outside the data manager. This forces processor developers to
write many specialized utilities. It also makes movement of datasets between heterogenous
computers a cumbersome operation.

Weak typing. Length information about numeric records is expressed in machine words.
Processing multiword items such as double-precision and complex data leads to awkward
interface calls.

Context Sensitivity. The meaning of every piece of data is strictly determined by position.
For homogenous structures such as rectangular matrices and vectors, this feature is irrele-
vant. But for heterogenous datasets, positional sensitivity can be an invitation to disaster.
Just displace an item one slot, and watch a program network collapse.

Section 4: INDEXED RECORDS

§4.3 INDEXED RECORD OPERATIONS

This section summarizes the basic operations on positional datasets. The GAL-DBM entry
points named here are discussed in §§7-8.

Append

A positional dataset is extended by one record. This takes three steps:

(a) If the dataset sequence number is unknown, find the dataset through LMFIND (§7.5).
(b) Position to end of the dataset through GMFEND or LMFEND (§8.2).

(c) Write record through GMTRAN or GMTRAC (§8.6).

Potential problems: lack of space to receive record. This can be checked before step (c)
by testing the return of LMFEND against the record size. If there is not enough space, copy
the dataset to the end of the library, then repeat steps (a) through (c).

Find

Step (a) is as above. Then position to desired record through GMFIRE or LMFIRE (§8.3).
The latter entry returns the record size, if it exists.

Read

Perform a find-record operation through LMFIND. If the record exists, move it to main
storage through GMTRAN or GMTRAC (§8.6).

Rewrite

Perform a find-record operation, as in the read-record case. After checking size if necessary,
follow with write-in-place through GMTRAN or GMTRAC (§8.6) and the contents are replaced.

5
Named Records

Sectlon 5: NAMED RECORDS

§5.1 NOMINAL DATASETS
Record Identification

A named record is identified by a name rather than by position. The record name consists
of two components: a symbolic key and a cycle, separated by a period. For example:

EDNA.345

Here EDNA is the record key and 345 is the record cycle.

The key is a string of up to 12 characters. Legal characters are exactly those accepted
for dataset keys (§3.1). The cycle is a nonnegative integer in the range 0 through 99999.

If the cycle is zero, it may be omitted. Thus

LINDA.O
LINDA

are the same thing.

All items in a named record should have the same datatype. Across the GAL-
DBM /user-program interface, the datatype is defined by the ezternal one-character codes
listed in Table 5.1. Within the database, the internal integer code specified by the NIFTY?
standard is stored. No provision is made for the type LOGICAL, which is a FORTRAN
anachronism. The “unknown” type is returned to the user program in multiple-record
retrieval operations if accessed records have different types.

Lengths of named records are expressed in logical units, t.e., by item count. For
example, the length of a named record consisting of 200 double-precision items (external
type D) is 200, rather than 400 words as it would be for an indexed record. Table 5.1
correlates external type codes to physical storage units.

Advantages and Disadvantages

Nominal datasets offer the following operational advantages over positional ones:

1. Any combination of record lengths can be used, end will be correctly handled by
the data manager. The constraints noted in §4.2 for DAL-conforming and GAL-
conforming datasets do not apply.

2. Records may be defined in any order, as their relative position has no significance.

3. Nominal datasets may be extended with new recorcs at any time (unless the dataset
is locked or deleted) because the records need not be physically contiguous. A new
record is simply stored at the end of the library, and a link to it placed in the Record
Access Table.

§5.1 NOMINAL DATASETS

Table 5.1. Datatype Codes and Storage Units for Named Records

Datatype of record items Ezxternal NIFTY? Storage Units per
code code record item
Integer I 0 1 word
Single-precision floating-point S 1 1 word
Double-precision floating-point D 2 2 words
Single-precision complex C 3 2 words
Character A 5 1 character
Mixed M - 1 word
Unknown U - 1 word

5-3

Section 5: NAMED RECORDS

4. The record datatype is maintained by the manager. This simplifies context-directed
display operations, automatic type conversion, and moving data between different
computers.

5. The use of logical lengths leads to more readable coding.

6. The record-transmission interface is cleaner, and yet far more powerful. For example,
many names can be made to point to the same record, which elegantly takes care of
things like repeated element stiffnesses in finite element analysis.

These are certainly attractive features, but they are not without cost. The superior flexi-
bility of named records is paid for in terms of additional disk storage (8 words per record
in the worst case), and additional disk accesses incurred in searching the Record Access
Table. These overhead costs can be considerably reduced, however, through the use of
record groups and tables, as explained in the following subsections.

Record Groups

Many scientific data structures involve regular record occurrences. More precisely, records
of equal length and type. In such cases, the records may be grouped under a common key

to form a Record Group or Group for short.

A record group is identified by a symbolic key and a cycle range. Example:
ELLEN.66:145

Here ELLEN is the record-group key whereas 66:145 specifies the cycle range; 66 is called
the low cycle while 145 is the high cycle. The example Group contains 145 — 66 + 1 = 80
records of identical size and type. If each record contains, say, 12 items, the total Group
length would be 960 items.

If the low and high cycles coincide, the record group reduces to an ordinary named
record. Thus

LORA .4:4
LORA .4

represent the same thing.

Individual records within a Group may be accessed as one ordinary record. Thus, for

ELLEN.66:145,

ELLEN .66 identifies the 1st record
ELLEN.88 identifies the 23rd record

Consecutive records may be accessed by specifying a cycle subrange; for example,

54

§5.1 NOMINAL DATASETS

ELLEN.76:85

specifies records 11 through 20 (inclusive) of ELLEN.66:145.

Why grouping? It offers potentially huge savings in storage and access overhead. A Group
of n records occupies only one entry in the Record Access Table, rather than n entries. A
specific case is discussed later in this Section.

Tables: Basic Concepts

A table is a two-dimensional, matrix-like arrangement of data. The following simple ex-
ample will be used to illustrate basic concepts:

NODE X-COOR Y-COOR Z-COOR

ny Iy hn 2
ny T2 Y2 22
ng T3 Ys 23
ng T4 Y4 24
ng Is Ys 25
ng Ig Yo 26

The meaning of this table would be obvious to a finite-element or finite-difference developer,
but is not relevant to the ensuing discussion. Much of the terminology that follows comes
from the theory of relational databases, in which tables play a fundamental role.

Columns of a table are called attributes. Each column is identified by a unique attribute
key. In the example table, the attribute keys are NODE, X-COOR, Y-COOR and Z-COOR. Matrix
rows are the table entries.

The order in which columns appear is irrelevant. For example, the following table is
equivalent to the previous one:

Y-COOR NGDE X-COOR Z-COOR

Y1 ny Ty 21
Y2 na I2 22
Y3 ng I3 23
Ya ng4 Ty <4
Ys ns Ts 25
Ys ne I6 26

Incidentally, this shows that tables and matrices are not equivalent. Permuting columns
of a matrix produces a different matrix.

REMARK 5.1

A normalized table is a table in which: (a) each table entry is atomic (a nondecomposable item), and
(b) no two rows are identical. Normalized tables are extremely important in relational database

5-5

Section 5: NAMED RECORDS

theory, where they are called relations. Rows of a normalized table are called tuples (pronounced
to rhyme with couples) in relational database literature.

GAL-DBM Tables

The concept of Table in GAL-DBM is quite general and is not restricted to normalized
tables (Remark 5.1). A Table (with capital T) is a two-dimensional arrangement of named
records that meets the following requirements:

1. Column-aligned records have identical size and datatype.
2. Column-aligned records are identified by the attribute key as a common record key.

3. Rows are identified by the row index used as a record cycle.

For example, suppose that the z,, y; and z; entries of the example table are merged into
3-item records, and the resulting attribute called XYZ-COOR:

NODE XYZ-COOR

ni Ty, Y1,21
n2 T2,Y2,<2
na I3,Yz,23
ng T4yY4y24
ns T5,Y5,25
ng L6 Y6y 26

This table is a valid GAL-DBM Table, although no longer a normalized one. Now
XYZ-COOR.5 means the triple (zs, ys, 25).

REMARK 5.2

If each record component reduces to one item, and row duplications are precluded, an GAL-DBM
Table reduces to a Normalized Table. From this it follows that GAL-DBM is suitable as an
archival system for ordinary relational data managers. But of course it is not restricted to such a
provincial function.

Table Representation with Record Groups

The definition of GAL-DBM Table suggests immediately that each Table column be
identified as a record group. Because of the row-identification rule, the cycle range of
these Groups must be the same. This motivates the following (indirect) definition.

A set of record groups with identical cycle range and which resides in the same nominal
dataset may be logically referenced as a Table whose attribute keys are the Group keys.
Thus, to represent the example table of §4.4.4, define the four Groups:

NODE.1:6

X-COOR.1:6
Y-COOR.1:6
Z-COOR.1:6

5-6

§5.1 NOMINAL DATASETS

A segment of a Table is specified by concatenating record keys with the ampersand oper-
ator, followed by the row range. Thus

NODE&X-COOR&Z-COOR.2:4

specifies the following segment of the example Table:

NODE X-COOR Z-COOR

n2 T2 22
nsa I3 z3
ng T4 24

The name
NODE&X-COOR&Y-COOR&Z-COOR.3
identifies the 3rd row. Finally,
NODE&X-COOR&Y-COOR&Z-COOR.1:6

identifies the complete Table. This naming convention is primarily used when an existing
Table is accessed for GET and PRINT operations.
Transposed Tables

A table whose attributes are stored row-wise is called a transposed table. The transposed
form of the example table above is

NODE n,y ng ns ny ns ng
X-COOR T Io I3 Iy s g
Y-COOR Y Y2 Y3 Ya Ys Y6
Z-COOR 2y 29 z3 24 25 26

A column of a transposed table is a data aggregate sometimes called a packet in the
literature. This term has the connotation that items of different type are “bundled” by
physical proximity.

Storing a table in transposed form does not change its intrinsic meaning: it just looks
different. The transposed arrangement is commonly used in FORTRAN codes to simplify
the assembly of tables when the number of entries is highly volatile (these are sometimes
called dynamic tables). This arrangement is a result of FORTRAN array-storage con-
ventions: appending a column to a two-dimensional array is easier than appending rows
(which require a change in the first array dimension).

To save a transposed table as an GAL-DBM Table, rows are made into Record Groups.
Inasmuch as row items are not contiguous in main storage, an tncrement specification has

5-7

Section 5: NAMED RECORDS

to be given to the record-group-writer routine. The same goes for reading Group items
into non-adjacent locations.

Implementation Considerations

As noted in §2.5, the Global Data Manager keeps track of named records through a Record
Access Table (RAT), which is in fact a transposed table. There is one RAT for each nominal
dataset. The RAT structure strongly resembles that of the Table of Contents (TOC): it
is partitioned into segments with a short segment-address header at the front of the first
segment.

When a new nominal dataset is opened, the RAT header area and the first RAT
segment are allocated and initialized. As records are defined, they are allocated RAT
entries called packets. Once a RAT segment is filled, a new segment is allocated at the end
of the library, initialized, and its address placed in the RAT header.

The Record Access Packet contains the following information: key, low and high cycle
(these being coincident for an ordinary record), datatype, device address, logical length,
physical offset, and row dimension. The offset item is only used in Groups and Tables
to calculate the location of member records. The row dimension is only used for named

records that are declared as rectangular matrices.

The mechanics of record accessing can be illustrated with a simple example. Ordinary
record EDNA.65 is requested, EDNA not being a Group key. To find a record, the Data
Manager has, in principle, to scan the entire RAT. If any RAT segments for the owner
dataset happen to be in the RAT Buffer Pool, those are searched first. If not found, RAT
segments are brought to main storage in chain-like order, and searched.

Now suppose that the dataset under question contains 3200 ordinary records. If the
record being searched for is in the RAT and access requests are randomly placed, 1600
RAT entries will have to be examined on the average, and 100 RAT segments searched.
This process can add up to a lot of disk accesses. Also note that the 3200 RAT entries
take up 3200 x 8 = 25600 words of storage (200 disk blocks on a VAX), which is not a
negligible amount of storage overhead.

Next, suppose that EDNA .65 is part of a record group EDNA. 1:3200, which is the only
thing in the dataset. The RAT will contain only one entry, and the record will be found
on the first try, not 1600. The storage overhead will be only 128 words (one RAT segment)
rather than 25600, a 200:1 improvement ratio.

This example clearly illustrates the dramatic efficiency advantages that can accrue
from the use of record grouping.

Record Groups vs. Indexed Records

Since record groups are simply collections of equal-size records, a perceptive reader might
ask: why not use indexed records and avoid the RAT overhead completely?

If a dataset is to contain simply one Group, the answer is that it does not make much
difference, and if you are desperate for maximum efficiency, a positional organization might

58

§5.1 NOMINAL DATASETS

as well be chosen. However, the occurrence of any of the following factors tilts the balance
toward a nominal organization:

1. The dataset is to contain several Groups, possibly intermixed with ordinary records
(e.g., control records).

2. Full data self-description is important, for example if the dataset is to be moved to
another computer.

3. The final extent of the dataset is not known in advance.

The last factor is of considerable importance in highly interactive programs such as graphic
pre- and post-processors. Consider the following example.

An interactive geometry pre-processor defines sets of points identified by a user number
(N) and three Cartesian coordinates (X, Y, and Z). The processor developer decides to
put all of this information into one nominal dataset with four Groups:

N.1:n, X.1:n, Y.1:n, Z.1:n

in which n denotes the number of points defined by the user. The trouble is, n is not
known in advance. The developer decides to split these Groups into groups of 100 records
each. Thus at the start of the interactive session, the four Groups

N.1:100, X.1:100, Y.1:100, Z.1:100

are defined and initialized. When the user defines the 101-th point, four more groups are
defined:

N.101:200, X.101:200, Y.101:200, Z.101:200

and so on. The fact that nominal dataset expansion is trivial, regardless of what other
database transactions may have occurred in the interim, mnakes named records particularly
attractive.

Note also that each record consists of only one item. If record grouping is not used,

the overhead would be intolerable, e.g., 6400 words for 200 sampling points! With record
grouping, the overhead is only 64 words for 200 points, which is quite reasonable.

5-9

6

Library
Operations

Sectlon 6: LIBRARY OPERATIONS

§6.1 GENERAL DESCRIPTION

Four GAL-DBM operations: open library, close library, flush library and pack library,
apply to a data library as a whole (i.e., are not concerned with individual datasets).
Associated entry points are alphabetically ordered in this Section by the last four letters
of the entry point name. A summary list is provided in Table 6.1.

Most programmers should be familiar with the first two operations. Open makes the
library device (resident on a disk file or main storage) available for processing and performs
various initializations. Close terminates library processing and releases associated storage
resources.

Flush is a more specialized operation: it forces modified library-table, core-resident
buffers to be written to the disk-resident library file. This operation is a precautionary
measure against abnormal run terminations, because a Close operation on normal termi-
nation automatically flushes all buffers.

Finally, pack physically eliminates all deleted datasets from a library. This operation
is the only GAL-DBM operation that may change dataset sequence numbers. Accordingly,
it should be used with extreme caution if performed by a running program that assumes
invariance of sequence numbers.

REMARK 6.1

Any user-program subroutine that references one of the following entry points should first identify
itself by calling GMUSER as explained in §14.4. This information is used by the central error
management routine of NICE-DMS for traceback prints.

§6.1 GENERAL DESCRIPTION

Table 6.1 Entry Points for Library File Operations

Operation Entry Arguments See
Point

Close library GMCLOS LDI, O, TRACE §6.2

Flush library GMFLUB LDI, O, TRACE §6.3

Open library GMOPEN LDI, EDNAME, DDPARS, LBFORM, TRACE §6.4
LMOPEN KEY, O, EDNAME, LIMIT, TRACE §6.4

Pack library GMPACK LDI, O, TRACE §6.5

Section 6: LIBRARY OPERATIONS

§6.2 CLOSE LIBRARY: GMCLOS

This operation breaks the connection between a Logical Device Index (LDI) and the data
library. The storage resources are released to the operating system, and cease to exist if
the library device was of scratch type.

FORTRAN Reference

Calling Sequence

CALL GMCLOS (LDI, O, TRACE)

Input Arguments

LDI If > 0, Logical Device Index of library device to be closed. If this LDI is
not active, no operation is performed.

If zero, close all open libraries.

LDI < O means condstional close. If the “NICE macroprocessor” flag
has been set to on using GMACRO (§10.2), the close request is ignored,
but the flush is performed. Otherwise device |LDI| is closed.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 6.2

A nonzero second argument is used in internal calls.

REMARK 6.3

If the library resides on a permanent disk file, GMCLOS flushes its core-resident buffers by calling
GMFLUB (§6.3) before closing the file.

EXAMPLE 6.1

CALL GMCLOS (7, O, 1600)

This statement closes the library connected to Logical Device Index 7.

EXAMPLE 6.2
CALL GMCLOS (O, 0, 1600)

This statement closes all open libraries.

§6.2 CLOSE LIBRARY: GMCLOS

Directive Reference

*CLOSE [ldi]

If ldy is specified, this directive closes the library attached to Logical Device Index LDI. If
omitted, zero is assumed and all active libraries are closed. A negative ldi has the same
interpretation as in the FORTRAN reference.

EXAMPLE 6.3

CALL CLPUT (' =CL ')

This message causes all active libraries to be closed.

Close Message

The DMGASP close service (see ref. 2, §3) writes an informative message on the bulk-print
file. For an auxiliary-storage device, the format is typified by the example

<DM> CLOSE, LDI: 8, File: RES.GAL

which is self-explanatory.

REMARK 6.4

As in the case of the OPEN message (§6.4), the CLOSE message is written out before the service is
actually performed, and an error diagnostic may conceivably follow. However, close-file errors are
comparatively rare.

REMARK 6.5

On Univac, the message format for a Block I/0 device is different: it will show the @FREE image
submitted to the Exec-1100 operating system. For FORTRAN I/O devices, the message has the
standard form shown above.

REMARK 6.6

In the case of a conditional close, no message appears if the operation is skipped.

REMARK 6.7
Open and close messages may be altogether suppressed by calling GMSOCM (§10.9).

Section 6;: LIBRARY OPERATIONS

§6.3 FLUSH LIBRARY: GMFLUB

This operation forces a new or modified library to be properly configured, meaning that
the Library Header, Table Of Contents, and Record Access Tables stored in the library
file reflects the current library state. To achieve conformity, GMFLUB scans the TOC and
RAT Page Buffer Pools, and writes altered pages to the library device. The library is not
closed.

FORTRAN Reference

Calling sequence

CALL GMFLUB (LDI, O, TRACE)

Input Arguments

LDI If LDI > 0, Logical Device Index of library device to be flushed.
If LDI = O, all open libraries are flushed.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 6.8

A nonzero second argument is reserved for internal calls.

REMARK 6.9

No operation is performed if the library has not been written on since the last GMFLUB call, or the
library-open operation, whichever occurred last.

REMARK 6.10
If the library resides on a scratch file, or on a core device, the flush operation is ignored.

EXAMPLE 6.4

CALL GMFLUB (8, 0, 1600)

This statement flushes the library connected to Logical Device Index 8.

EXAMPLE 6.5

CALL GMFLUB (0, O, 1600)

This statement flushes all open libraries.

§6.3 FLUSH LIBRARY: GMFLUB

Directive Reference

*FLUB [ld]

If lds appears in the directive, GMFLUB is called to flush the library connected to that LDIL
If omitted, all active libraries are flushed.

Section 6: LIBRARY OPERATIONS

§6.4 OPEN LIBRARY: GMOPEN/LMOPEN

This operation opens (activates, assigns, declares) a data library resident on a disk file or
main storage, and connects it to a Logical Device Index (L.DI). A library must be opened
before any I/O activity is attempted on it.

FORTRAN Reference for GMOPEN

Calling sequence

CALL GMOPEN (LDI, EDNAME, DDPARS, LBFORM, TRACE)

Input Arguments

LDI

EDNAME

DDPARS

If LDI > 0, Logical Device Index assigned to a library device. All sub-
sequent references will be done through this LDI. Should this LDI be
active, the old device is closed first. This interpretation applies if the
“NICE Macroprocessor” flag defined using GMACRO (§10.2) is O or 1.

If LDI = O on entry, scan the Logical Device Table for an already ac-
tive EDNAME. If found, its LDI is returned in this argument (which must
therefore be a variable in the calling program), and the open operation
skipped. If not found, then search DMGASP’s Logical Device Table
(ref. 2) for the first tnactive LDI, set LDI to this value, and continue as
in the LDI > O case.

If LDI < O, begin as if LDI = 0, but if an active EDNAME is not found, set
LDI = |LDI| and then proceed as in the LDI > O case. The absolute
value is returned in the argument. (Note that if ILDI| happens to be
active on entry, the old device will be closed first.)

If the NICE Macroprocessor flag is 2, then LDI > O is interpreted as
LDI < O, i.e., all opens are conditional.

A character string that contains the ezternal device name described in
§2.7 of ref. 2. This textstring must be supplied left-adjusted and blank
filled. The name is assumed to be terminated by the first occurrence of
a blank character, or by the implied length of EDNAME, whichever occurs
first. The reader is referred to §§2.7.1-2.7.3 of ref. 2 as regards legal
device names for specific computers.

If a blank value is specified for this argument (1.e., EDNAME = * '), a
default name is selected following the rules set forth in Table 2.8 of ref. 2.

A four-word integer array that supplies the device descriptor parameters
discussed in §2.5 of ref. 2.

6-8

LBFORM

TRACE

§6.4 OPEN LIBRARY: GMOPEN/LMOPEN

DDPARS(1) = TYPEX: device type index: an integer in the range 0
through 6. These are listed in Table 6.2, which reproduces Table 2.1
of ref 2. For the distinction between 3 and 4, see Table 2.2 of ref. 2.

DDPARS(2) = OPTX: device options index: an integer in the range -6
through 12. The most useful ones are listed in Table 6.3, which repro-
duces Table 2.3 of ref. 2.

DDPARS(3) = LIMIT: device capacity limit in words if a new or scratch
device. If zero, the default size specified in Table 2.6 of ref. 2 is assumed.

For a core-resident library (TYPEX = B), LIMIT is the effective blank-
common length allocated, starting at the offset prescribed in DDPARS (4).

.DDPARS(4) = XPRU for an auxiliary storage device TYPEX < 4, or BCOFF

for a core (blank-common-resident) device (TYPEX = 5).
For an auxiliary storage device:

XPRU > 0O: external PRU size in words. A value greater than 1 is only
useful for DAL files, which are sector-addressable.

XPRU = 0: select XPRU = 1 (word addressing).

XPRU = -1: select XPRU = 1 and do Paged 1/O to this device if a Page
Buffer Pool (PBP) has been previously declared using GMPOOL (§10.7).
If no PBP has been declared, XPRU = -1 is the same as 0 or 1.

In summary: For GAL files, select either -1 if you want a Paged I/O

device, or 0 if you do not. For DAL files, set XPRU to 28 on Univac, 32
on VAX or IBM, 64 on CDC Cyber.

For a core device, BCOFF is the blank-common offset in words of the
device storage allocation. If BCOFF = 0, the device allocation is to start

at the first word in blank common. For these devices, XPRU = 1 is
implied.

A two-word integer array specifying the library format when opening a
NEW or SCRATCH device, as set forth in Table 6.4. For additional
details, see Table 3.1.

This argument is ignored if opening an existing library, as GAL-DBM
can sense the format by scanning its header.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Section 6: LIBRARY OPERATIONS

Table 6.2 The Device Type Index (TYPEX)

TYPEX Deuvice type

0 Block I/O on disk
1 Reserved for future use
2 Reserved for future use

34 FORTRAN direct access

5 “Core device” in blank common

Table 6.3 The Device Options Index (OPTX)

OPTX Options

0 Open scratch device

3 Open existing device as read-only

4 Open existing device allowing writes
6 Open new device and catalog as

permanent file (public on Univac)

n
(o))

-5 Same as OPTX = 3 if file exists, else same as OPTX

L[]
»

-6 Same as OPTX = 4 if file exists, else same as OPTX

6-10

§6.4 OPEN LIBRARY: GMOPEN/LMOPEN

Table 6.4 The Library Format Array LBFORM

LBFORM Libform Features
0,0 GAL8O Holds positional datasets
0,1 GALS82 Holds nominal datasets
1,0 DALPRO Compatible with DALPRO, SPAR

6-11

Section 6: LIBRARY OPERATIONS

FORTRAN Reference for LMOPEN

LMOPEN is a variant of GMOPEN that has a more human-engineered calling sequence. It is
equivalent to a call to GMOPEN with LDI = 0.

Calling Sequence

LDI = LMOPEN (KEY, O, EDNAME, LIMIT, TRACE)

Input arguments

KEY A character string that specifies, in symbolic form, those attributes
conveyed by arguments DDPARS and LBFORM in GMOPEN. It consists
of a mainkey optionally followed by qualifiers. For example: KEY =
'NEW/DAL °'; here NEW is the mainkey while DAL is a qualifier. A list of
valid mainkeys and qualifiers appears in Table 6.5.

EDNAME External device name, as for GMOPEN.

LIMIT Device capacity limit in words if opening a new or scratch device (same
as DDPARS(3) for GMOPEN).

TRACE Same as for GMOPEN.
Function value

LMOPEN Returns the assigned LDI if open operation was successful. The pro-
cedure followed is identical to that followed by GMOPEN when argument
LDI is zero on entry.

EXAMPLE 6.6

Create a GALBO library to reside on permanent file TEXT*LIBRARY (a Univac file name) and connect
it to Logical Device Index 3 using the default LIMIT:

INTEGER DDP(4), LTYP(2)
DATA pop /0,6,0,0/, LTYP /0,0/

CALL GMOPEN (3, 'TEXT+«LIBRARY ', DDP, LTYP, 2500)

Note the blank character terminator after the file name.

6-12

§6.4 OPEN LIBRARY: GMOPEN/LMOPEN

Table 6.5 KEY Argument (Mainkeys and Qualifiers) for LMOPEN

Mainkey Root Effect

NEW N Open new library device and catalog as permanent

OLD 0 Open existing library device allowing writes

ROLD R Open existing library device as read-only

SCR S Open scratch library device

COLD C Open OLD if device exists, else NEW

none COLD assumed unless BC qualifier given in which case SCR
Qualifier Root Valid for Effect

mainkeys
BC BC SCR Blank-common device, with BCOFF = O
BIO BI all Block 1/0 device (default if
available, else default is F1)

DAL D NEW, SCR, COLD Create DAL libform
F1 F1 all FORTRAN 1/0 device with TYPEX=3
F2 F2 all FORTRAN 1/0 device with TYPEX=4
GALS8O GAL80 lEW, SCR Create GALBSO libform
GAL82 GAL82 NEW, SCR Create GALS2 libform (default)
PI0 - P all but SCR/BC Paged 1/0 device (default: Unpaged)

6-13

Section 6: LIBRARY OPERATIONS

EXAMPLE 6.7
Repeat the above example with LMOPEN.

LDI = LMOPEN ('NEW/GAL8O ', O, 'TEXT+LIBRARY ', O, 2600)

In this case the LDI is picked by GAL-DBM, and will not necessarily be 3.

Directive Reference

*OPEN [Qualifiers) [ldi,] File name [/LIMIT=limit]

This directive is described in detail in ref. 6.

Open Message

When a library file is opened, an informative message is normally written by the I/0
Manager to the bulk-print file. For a library resident on auxiliary storage, the message

format is typified by the example

<DM> OPEN, LDI: 8, File: RES.GAL, Attr: Block I/0, NEW, Paged

which is largely self-explanatory. The message above is for a Paged Block I/O device,
created on permanent file RES.GAL (a VAX file name) and which will be referenced through
LDI number 8. For a FORTRAN /0O device, the logical unit number will be shown before
the Attributes text.

The open message for a core-resident library is more concise. For example,

<DM> OPEN, LDI: 12, BC(30001: 75000)

This message says that Logical Device Index 12 will point to a core device that occupies
word locations 30001 through 75000 of blank common. No device name is given.

REMARK 6.11

The message is written out just before the open request is submitted to either the operating system
or the FORTRAN I/0 library. Thus, the appearance of the message does not necessarily mean
that the operation was successful. If an error condition is detected, a diagnostic will immediately
follow (assuming, of course, that the error-file unit is the same as the bulk-print-file unit).

REMARK 6.12

On the Univac version, the message given for Block I/O devices has a different format. It is the
image of the @ASG request submitted to the Exec-1100 system, followed immediately by the
image of the QUSE request that links the external and internal file names. For FORTRAN 1/0
devices, the message has the standard format shown above.

6-14

§6.4 OPEN LIBRARY: GMOPEN/LMOPEN

REMARK 6.13

If the case of a conditional open (LDI < 0), no message appears if the operation is skipped because
EDNAME is already open. Otherwise the message will display the actual LDI chosen by the I/O
Manager DMGASP.

REMARK 6.14

Some NICE programmers view these messages as nuisances, especially in highly interactive graphic
processors when the bulk-print-file unit is assigned to the screen. The messages may be suppressed
(forever or temporarily, as desired), by calling entry point GMSOCM (§10.9).

6-15

Section 6: LIBRARY OPERATIONS

§6.5 PACK LIBRARY: GMPACK

This operation compacts a data library tn situ by physically removing all deleted datasets.
The sequence number of active datasets may change as a result of this operation.

FORTRAN Reference

Calling sequence

CALL GMPACK (LDI, O, TRACE)

Input Arguments

LDI Logical Device Index of library device to be packed.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for

internal use.

REMARK 6.15

The second argument is presently a dummy parameter.

REMARK 6.16

The present implementation of the pack operation is primitive. A scratch library file is opened,
and all active datasets copied to it; then the contents of the original library are replaced by those
of the scratch library, which is closed.

EXAMPLE 6.8

Pack library 3 in place.

CALL GMPACK (3, 0, 1600)

Directive Reference

where ldi is the Logical Device index of the library to be packed.

6-16

[

Basic Dataset
Operations

Section 7. BASIC DATASET OPERATIONS

§7.1 GENERAL DESCRIPTION

This section describes basic operations that affect one or more datasets identified by name
or sequence number, and that do not depend on the record infrastructure. Associated
entry points are alphabetically ordered by the last four letters of the entry point name
(i.e., common roots GM and LM are disregarded). A summary entry point list is provided
in Table 7.1.

This Section does not address the following subjects:

1. Operations at the record level (covered in §§8-9).
2. Auxiliary operations such as building dataset names (covered in §10).
3. Information-retrieval entry points (covered in §11).

4. Copy operations (covered in §12).

REMARK 7.1

Any user-program subroutine that references one of the entry points listed in Table 7.1 should
first identify itself by calling GMUSER as explained in §14.4. This information is used by the central
error management routine of NICE-DMS for traceback prints.

7-2

§7.1 GENERAL DESCRIPTION

Table 7.1 Entry Points for Basic Dataset Operations

Operation Entry Arguments See
_Point

Globally match name GMATCH LDI, DSNAME, LOOK, LIST, MLIST, §7.2

KLIST, TRACE

Delete GMDELD OPL, LDI, DSNAME, IDSN, TRACE §7.3

Enable GMENAD OPL, LDI, DSNAME, IDSN, TRACE §7.4

Find first occurrence LMFIND LDI, DSNAME, TRACE 87.5

Find next occurrence ~LMFINX OPL, LDI, DSNAME, IDSNO, TRACE §7.6

Get name GMGENT LDI, DSNAME, IDSN, MR, TRACE §7.7

Directory GMLINT LDI, DSNAME, LOPT, TRACE §7.8
GMLIST LDI, IDSN1, IDSN2, LOPT, TRACE

Set lock code GMLOCK LDI, IDSHN, LOCK, TRACE §7.9

Open GMOPED OPL, LDI, DSHAME, IDSN, MR, TRACE §7.10

Put name GMPUNT LDI, DSNAME, IDSN, MR, TRACE §7.11
LMPUNT LDI, DSNAME, TRACE

Reserve space GMREDS LDI, IDSH, ICHDES, NWRES, TRACE §7.12

Rename GMREND OPL, LDI, DSHAM1, IDSH, DSNAM2, TRACE §7.13

Set datatype code GMTYPE LDI, IDSH, TYPE, TRACE §7.14

Section 7: BASIC DATASET OPERATIONS

§7.2 GLOBALLY MATCH DATASET NAME: GMATCH

Entry point GMATCH scans the complete Table of Contents of a data library for datasets
that match a given name, and returns a list of their sequence numbers. The given name
usually has masking and/or cycle-range specifications.

FORTRAN Reference

Calling sequence

CALL GMATCH (LDI, DSNAME, LOOK, LIST, MLIST, KLIST, TRACE)

Input arguments

LDI

DSNAME

LOOK

LIST

MLIST

TRACE

Logical Device Index of library device.

Dataset name to be matched. Generally contains mask or cycle-range
specifications.

Search qualifier:
1 Look for active datasets only.
-1 Look for deleted datasets only.

0 Look for active and deleted datasets.

i

An integer array dimensioned MLIST or larger, that is to receive the
sequence numbers of matched datasets.

Maximum number of dataset sequence numbers that may be placed
in LIST. Usually equal to the dimension of array LIST in the calling
program.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments

LIST

KLIST

REMARK 7.2

Receives KLIST sequence numbers of matched datasets.

Count of sequence numbers placed in LIST. (May be zero, but cannot
exceed MLIST).

No diagnostic is given if not a single match is made (KLIST = 0).

7-4

§7.2 GLOBALLY MATCH DATASET NAME: GMATCH

REMARK 7.3

The Table of Contents is searched from the beginning (sequence number 1). Thus entries placed
in array LIST will be always in strictly ascending order.

EXAMPLE 7.1
Find all datasets (up to 100) with mainkey STRUCTURE in library 3:

CALL GMATCH (3, 'STRUCTURE.* ', O, LIST, 100, KLIST, 2600)

EXAMPLE 7.2
Find all deleted datasets (up to 200) in library 4:

CALL GMATCH (4, '*.x ', -1, LIST, 200, KLIST, 2500)

Directive Reference

None.

Section 7: BASIC DATASET OPERATIONS

§7.3 DELETE DATASET: GMDELD

Entry point GMDELD marks one or more datasets as deleted. The dataset specification may
be by sequence number or by name. In the latter case, the name argument often contains
key-masking or cycle-range specifications.

FORTRAN Reference

Calling sequence

CALL GMDELD (OPL, LDI, DSNAME, IDSN, TRACE)

Input arguments

OPL Option letters string. Presently:

W Issue a warning diagnostic if a named specification does not match
any existing active dataset.

LDI Logical Device Index of library device.

DSNAME If nonblank, name that controls the deletion process. If less than 40
characters in length (28 for GALSO libraries), it should be terminated by
a trailing blank. Masking and cycle-range specifications are permitted.

IDSN If DSNAME is blank, sequence number of dataset to be deleted.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 7.4

GMDELD can delete by sequence and by name.

REMARK 7.5

If option letter W is not given, no warning diagnostic is given if no dataset name is matched
by argument DSNAME, or if the lock-code value of any such dataset precludes deletion (see next
Remark).

REMARK 7.6
Deletion is precluded if the dataset lock code is 2 or higher (see Table 3.2).

EXAMPLE 7.3
Delete dataset STAR.SHIP in library 14:

CALL GMDELD (' °, 14, °'STAR.SHIP ', 0, 1700)

7-6

§7.3 DELETE DATASET: GMDELD

EXAMPLE 7.4
Delete from library 14 all datasets whose key extension ends with X, and issue a warning if none
exist:

CALL GMDELD ('W’', 14, ‘'*.xX.* ',k 0, 1700)

EXAMPLE 7.5

Delete from library 7 all datasets of the form RESPONSE.VECTOR. cyclel.0.0, except for the one
with highest cycle! (this is analogous to VAX/VMS’s PURGE command):

CALL GMDELD (' ', 7, 'RESPONSE.VECTOR.L:H-1 ', 0, 1700)

EXAMPLE 7.6
Delete dataset at sequence 68 in library 11:

CALL GMDELD (' *, 11, * ',k 68, 2650)

Directive Reference

To delete by sequence range:

*DELETE [di,1dsnl:idsn2

To delete by name:

*DELETE ldt, Dataset _name

For details, see ref. 5.

EXAMPLE 7.7
Delete all datasets whose mainkey is SOLVE through a message:

CALL CLPUT (’ +DEL 3,SOLVE.* ')

EXAMPLE 7.8

Delete all datasets in sequence range 23 through 44 through a message:

CALL CLPUT (' *DEL 3,23:44 *)

Sectlon 7: BASIC DATASET OPERATIONS

§7.4 ENABLE DATASET: GMENAD

Entry point GMENAD enables one or more datasets. The dataset identification may be by
sequence number or by name. In the latter case, the name may contain masking characters
and/or cycle-range specifications.

FORTRAN Reference

Calling sequence

CALL GMENAD (OPL, LDI, DSNAME, IDSN, TRACE)

Input arguments

OPL String of option letters. Presently:

W Print warning message if a named dataset specification does not
match at least one existing deleted dataset.

LDI Logical Device Index of library device.

DSNAME If nonblank, name of dataset(s) to be enabled. If less than 40 characters
in length (28 for GALB8O libraries), it should be terminated by a trailing
blank. Masking and cycle-range specifications are allowed.

IDSN If DSNAME is blank, sequence number of dataset to be enabled.
If DSNAME is nonblank, this argument is ignored.

TRACE A posttive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 7.7

This entry point replaces GMENAB, which was restricted to enabling by sequence number.

REMARK 7.8

No diagnostic is given if the dataset does not exist (sequence number is out of range) or is already
enabled.

REMARK 7.9

Before enabling a deleted dataset, GAL-DBM scans the TOC to check whether there is an enabled
dataset by the same name. If so, the latter is marked as deleted because names of enabled datasets
must be unique. If the lock code of the already-enabled dataset precludes deletion, the operation
aborts.

§7.4 ENABLE DATASET: GMENAD

EXAMPLE 7.9
Enable dataset at sequence number 162 in library 12:

CALL GMENAD (' ', 12, ' ', 162, 1700)

EXAMPLE 7.10

Enable all datasets whose mainkey ends in Z in library 14:

CALL GMENAD (' ', 14, '*Z.% ', 0, 1750)

Directive Reference

Enable by sequence range:

*ENABLE ldf,idsnl1[:idsn2/

Enable by name:

*ENABLE Idi, Dsname

EXAMPLE 7.11

CALL CLPUT (' +ENAB 3,656)

CALL CLPUT (' *ENAB 3,COME.BACK ')

Section 7: BASIC DATASET OPERATIONS

§7.5 FIND DATASET: LMFIND

LMFIND is the standard entry point for finding an individual dataset in a library given its
name. If found, the dataset sequence number is returned as the function value.

FORTRAN Reference

Calling sequence

IDSN = LMFIND (LDI, DSNAME, TRACE)

Input arguments

LDI Logical Device Index of library device.

DSNAME The name of the dataset to be located. If less than 40 characters in
length (28 on GALBSO libraries), it must be terminated by at least one
blank. See Remark 7.12 as regards the presence of masking characters
or cycle ranges.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Function Return

LMFIND If the name DSNAME matches that of an active dataset, its sequence
number is returned here. Otherwise LMFIND returns zero.

REMARK 7.10

On successful return from this operation for a positional dataset, the library file is positioned at
the start of record number 1 (not at the descriptor start). This facilitates immediate retrieval of
the first record. For a nominal dataset, the library position is unpredictable.

REMARK 7.11
LMFIND ignores deleted datasets.

REMARK 7.12

The dataset name may contain masking characters or cycle range specifications. If so, the search
begins at the TOC start (sequence number 1), and the first dataset matched is reported.

REMARK 7.13

If the dataset name does not contain masking characters or cycle range specifications, the TOC
search is not necessarily sequential, but is affected by the pattern of paging activity in the TOC
Buffer Pool.

7-10

§7.5 FIND DATASET: LMFIND

EXAMPLE 7.12
Search library connected to LDI = 7 for dataset CONFUCIUS.SAYS.0.0.0 and return its sequence
number in IDSN if found:

IDSN = LMFIND (7, 'CONFUCIUS.SAYS ', 1300)

EXAMPLE 7.13
If no dataset with mainkey SYSTEM is in the library with LDI = 8, jump to subroutine DEFSYS:

IF (LMFIND (8, 'SYSTEM.* ', 1400) .EQ. O) CALL DEFSYS

Directive Reference

*FIND DATASET ldi, Dataset_name [/SEQ=Macrosymbol]

For details, see ref. 5.

EXAMPLE 7.14

CALL CLPUT ('*FIND DATASET 7,CONFUCIUS.SAYS /SEQ=IDSN ')

7-11

Sectlon 7: BASIC DATASET OPERATIONS

§7.6 FIND NEXT DATASET OCCURRENCE: LMFINX

LMFINX is similar to LMFIND (described in the previous subsection), but it commences the
search after a specified sequence number. It is normally used to find all datasets that
match a masked name, as GMATCH (§7.2) does, but with a return-to-user-program after
each match. Additionally, LMFINX can find deleted datasets.

FORTRAN Reference

Calling sequence

IDSN = LMFINX (OPL, LDI, DSNAME, IDSNO, TRACE)

Input arguments

OPL
LDI

DSNAME

IDSNO

TRACE

Function Return

LMFINX

Option letters string. Presently D means do not skip deleted datasets.
Logical Device Index of library device.
The name of the dataset to be located. If less than 40 characters in

length (28 on GALSO libraries), it must be terminated by at least one
blank. Generally contains masking and/or cycle-range specifications.

Specifies that TOC search is to begin at sequence number (IDSNO+1).

A posttive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use. '

If name matches that of an active dataset, its sequence number is re-
turned here. Otherwise LMFINX returns zero.

Directive Reference

None.

7-12

§7.7 GET NAME FROM TOC: GMGENT

§7.7 GET NAME FROM TOC: GMGENT

Entry point GMGENT is the inverse of GMPUNT (§7.11). Given the library device LDI and
the dataset sequence number, it returns the stored dataset name and a positional /nominal

indicator.

FORTRAN Reference

Calling sequence

Input arguments
LDI
IDSN

TRACE

CALL GMGENT (LDI, DSNAME, IDSN, MR, TRACE)

Logical Device Index of library file.
Dataset sequence number.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments

DSNAME

MR

EXAMPLE 7.15

A character string that receives the stored name of the IDSN'* dataset.
The string should have a length of 40 characters (28 for GALSO libraries)
or more in the calling program to avoid potential truncation.

If IDSN is out of range, or some other error condition occurs, DSNAME is
blanked.

Returns the value of MR (Maximum Record Access Packets) specified
when the dataset name was installed using GMPUNT (§7.11). If the dataset

is positional, MR returns zero.

Access dataset at sequence 142 of library 12, and get its name into character string DSN:

CHARACTER*40 DSN

CALL GMGENT (12, DSl, 142, M, 2300)

7-13

Sectlon 7: BASIC DATASET OPERATIONS

Directive Reference

*GET DATASET ld:,idsn [/NAME=Macrosymbol]

For details, see ref. 5.

§7.8 LIST DATASETS: GMLINT/GMLIST

§7.8 LIST DATASETS: GMLINT/GMLIST

GMLINT and GMLIST produce a list of datasets stored in the Table of Contents (TOC) of a
data library. The list may be limited to datasets that match an input name (GMLINT), or
to datasets in a sequence range (GMLIST). Various list formats, controlled by option letters,
are provided. Other formats may be added in the future.

FORTRAN Reference for GMLINT

Calling sequence

CALL GMLINT (LDI, DSNAME, LOPT, TRACE)

Input arguments

LDI Logical Device Index of library device.

DSNAME Dataset name that specifies the print range. If less than 40 characters in
length (28 for GALSO files), it should be terminated by a blank character.
Masking and cycle-range specifications are permitted.

LOPT An option letter that may be used to control the list format. See Table
7.2.
TRACE A positive integer used as identifying label in error traceback prints.

Do not use a zero or negative value here; these values are reserved for
internal use.

FORTRAN Reference for GMLIST

Calling sequence

CALL GMLIST (LDI, IDSN1, IDSH2, LOPT, TRACE)

Input arguments

LDI Logical Device Index of library device.

IDSN1 If positive nonzero, sequence number at which TOC print is to start.
If zero, IDSN1=1 is assumed (first dataset).
If negative, list the last | IDSN1| datasets in reverse order (IDSN2 is then
ignored).

IDSN2 If positive nonzero, sequence number at which TOC print is to stop (if
greater than the highest sequence number, print will stop there).

If zero, list ends at last dataset in library.

7-15

Section 7: BASIC DATASET OPERATIONS

If the effective IDSN2 happens to be less than IDSN1, their role is re-
versed, and the TOC is listed backward.

LOPT An option letter that may be used to control the list format. See Table
7.2.
TRACE A positive integer used as identifying label in error traceback prints.

Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 7.14

Deleted datasets that fall in the print range or match DSNAME are shown. They are flagged by an
asterisk immediately following the sequence number.

EXAMPLE 7.16
Conventional TOC print of all datasets in library 6 whose mainkey starts with ISM$:

CALL GMLINT (6, 'ISM$x.x *, ' ', 1600)

EXAMPLE 7.17

Dated brief TOC print of the highest two first-cycles of datasets named SHELL.VELOCITY.*.0.0
in library 12:

CALL GMLINT (12, 'SHELL.VELOCITY.H-1:H ', 'D’', 1800)

EXAMPLE 7.18
Conventional listing of the full TOC of library 8:

CALL GMLIST (8, O, 10000, ' ', 2300)

EXAMPLE 7.19
SPAR-formatted TOC print of last 16 datasets in library 4:

CALL GMLIST (4, -16, 0, 'S’', 2400)

7-16

§7.8 LIST DATASETS: GMLINT/GMLIST

Directive Reference

*PRINT TOC [/Form] ldi, Dataset.name

where *PRINT TOC may be abbreviated to *TOC. For details, see ref. 5.

EXAMPLE 7.20
CALL CLPUT (’'*TOC 1,RUN.* ')

Directive Reference

*PRINT TOC [/Form] [ldi[,idsn1 [:idsn2)]]

where *PRINT TOC may be abbreviated to *TOC. For details see ref. 6.

EXAMPLE 7.21
CALL CLPUT (’'+TOC 6,-10 ')

Sectlon 7: BASIC DATASET OPERATIONS

Table 7.2 TOC List format Codes

LOPT
Argument

List format

blank

Conventional: sequence number, date and time of
installation, lock code, words stored, record count,
generating processor name, type code, dataset name

Brief: sequence number and dataset name

Dated brief: sequence number, date and time of
installation, dataset name

DALPRO “Matrix” style (DAL files only)
Physical: sequence number, dataset start address,
descriptor size, first record size, extent and

capacity (in PRUs), dataset name

SPAR style (DAL files only)

§7.9 SET LOCK CODE: GMLOCK

§7.9 SET LOCK CODE: GMLOCK

Entry point GMLOCK is used to set or change the lock code of a dataset identified by sequence
number.

FORTRAN Reference

Calling sequence

CALL GMLOCK (LDI, IDSN, LOCK, TRACE)

Input arguments

LDI Logical Device Index of library file.

IDSN Dataset sequence number.

LOCK Dataset lock code value. Refer to Table 3.2 for detailed explanation.
TRACE A positive integer used as identifying label in error traceback prints.

Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 7.15

Dataset locking is not fully implemented.

REMARK 7.16
If GMLOCK is never called, the lock code is zero.

REMARK 7.17 :

A stored code of 3 or higher can be reduced to 0 or 1 only by the processor that installed the
dataset (see Table 3.2 for the details). If this constraint is not met, an error occurs and the
operation aborts.

REMARK 7.18
GAL-DBM provides only lock-by-sequence. If you need lock-by-name, write a subroutine using
LMFINX.

EXAMPLE 7.22
Make dataset at sequence number 142 read-only.

CALL GMLOCK (12, 142, 1, 1900)

Directive Reference

None.

7-19

Section 7: BASIC DATASET OPERATIONS

§7.10 OPEN DATASET: GMOPED

The open-dataset operation is a “conditional GMPUNT”. If the dataset name is already in
the library, no operation is performed. Otherwise, the name is installed using GMPUNT.

FORTRAN Reference

Calling sequence

CALL GMOPED (OPL, LDI, DSNAME, IDSN, MR, TRACE)

Input arguments

OPL
LDI

DSNAME

MR

TRACE

Options letter string. Presently none. Set to blank.

Logical Device Index of library device.

Name of dataset to be installed. If less than 40 characters in length

(28 in GALSO libraries), it must be terminated by a blank character.
Masking or cycle-range specifications are not permitted; if present, an

error message will result and the operation aborts. Relative cycle spec-
ifications, on the other hand, are allowed (and frequently used).

See GMPUNT

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments

IDSN

If dataset already exists, sequence number of existing dataset. If dataset
did not exist and the install operation was successful, sequence number
assigned to new dataset. If an error occurred, it returns zero.

7-20

§7.11 PUT NAME IN TOC: GMPUNT/LMPUNT

§7.11 PUT NAME IN TOC: GMPUNT/LMPUNT

Before records can be stored in a new dataset, its name must be installed in the Table of -
Contents (TOC). This operation is accomplished through entry points GMPUNT and LMPUNT.
Note that LMPUNT can only be used to install positional datasets, while GMPUNT can install
both positional and nominal datasets.

FORTRAN GMPUNT Reference

Calling sequence

CALL GMPUNT (LDI, DSNAME, IDSN, MR, TRACE)

Input arguments

LDI Logical Device Index of library device.

DSNAME Name of dataset to be installed. If less than 40 characters in length
(28 in GALSO libraries), it must be terminated by a blank character.
Masking or cycle-range specifications are not permitted; if present, an
error message will result and the operation aborts. Relative cycle spec-
ifications, on the other hand, are allowed (and frequently used).

MR This argument is relevant only for nominal datasets, in which case

MR > O: MR is an upper bound on the number of Record Access Table
entries to be used. See Remark 7.19.

If installing a positional dataset (GAL8O library), set MR to zero.

TRACE A posttive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments

IDSN If the operation is successful, sequence number of new dataset, otherwise,
it is zero.

REMARK 7.19

To come up with a value for MR, do the following. Estimate (1) number of ordinary records to
be stored, and (2) number of record groups to be stored, add the two together and round up to
the next 16-multiple. As discussed in the next remark, the estimate can be very coarse.

REMARK 7.20

The value of MR is used to size up the RAT Header at one word for each 16 RAT entries.
Accordingly, a coarse estimation is sufficient. For example, going from MR = 180 to 320 makes a
difference of 10 words, which is not very significant.

7-21

Section 7: BASIC DATASET OPERATIONS

FORTRAN LMPUNT Reference

Function Reference

IDSN = LMPUNT (LDI, DSNAME, TRACE)

Input arguments
The input arguments have the same meaning as for GMPUNT. Note the absence of the MR

argument precludes the installation of nominal datasets with LMPUNT.

EXAMPLE 7.23
Install positional dataset CONFUCIUS.SAYS in library 7:

CALL GMPUNT (7, 'CONFUCIUS.SAYS ', IDSN, O, 1300)

EXAMPLE 7.24
Install dataset RESPONSE.VEC.N as nominal dataset name in library 11 with an MR estimate of 48
RAT entries:

CALL GMPUNT (11, 'RESPONSE.VEC.N ', IDSN, 48, 1600)

Directive Reference

*PUT DATASET ldi, Dataset.name [/MR=mrat] [/SEQ=Macrosymbol]

For details, see ref. 5.

EXAMPLE 7.25

CALL CLPUT ('*PUT DATA 1,HEW.START.N ')

7-22

§7.12 RESERVE DATASET SPACE: GMREDS

§7.12 RESERVE DATASET SPACE: GMREDS

Entry point GMREDS is used to force GAL-DBM into reserving physical space for a posstional
dataset just installed using GMPUNT or LMPUNT. The operation has no meaning for nominal
datasets. ‘ Y

FORTRAN Reference

Calling sequence

CALL GMREDS (LDI, IDSN, NCHDES, NWRES, TRACE)

Input arguments

LDI Logical Device Index of library device.
IDSN Dataset sequence number returned by GMPUNT or LMPUNT.
NCHDES Number of characters to be reserved for the descriptor record at the

dataset start. This space, rounded up to the next “covering” word, is
filled with blanks.

If NCHDES = O, no descriptor reservation is made.

NWRES Number of words to be reserved for dataset proper. A negative value
requests that the |NWRES| space be physically filled with zero words.

If NWRES = O, no space is reserved.

TRACE A posttive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments

NCHDES If GMREDS is not successful, NCHDES is set to zero.

NWRES If GMREDS is not successful, HWRES is set to zero.

REMARK 7.21

This operation is confined to positional datasets. If it is tried on a nominal library, the operation
is ignored.

REMARK 7.22

GMREDS replaces function entry point LMPURS, described in the previous version of this document.
LMPURS combined the functions of LMPUNT and GMREDS.

7-23

Sectlon 7: BASIC DATASET OPERATIONS

EXAMPLE 7.26

Install positional dataset LOW.PROFILE.6 in library 11, and reserve 240 characters for the descrip-
tor and 52000 words for the dataset proper.

CALL GMPUNT (11, 'LOW.PROFILE.6 ', IDSN, O, 1300)
CALL GMREDS (11, IDSN, 240, 52000, 1400)

Directive Reference

None.

7-24

§7.13 RENAME DATASET: GMREND

§7.13 RENAME DATASET: GMREND

Entry point GMREND changes the name of one or more datasets. The dataset specification
may be by sequence number or by name.

FORTRAN Reference

Calling sequence

CALL GMREND (OPL, LDI, DSNAM1, IDSN, DSNAM2, TRACE)

Input arguments

OPL

LDI

DSNAM1

IDSN

DSNAM2

TRACE

REMARK 7.23

Options letter string. Presently W = print warning if DSNAM1 is non-blank
and there are no matches.

Logical Device Index of library file.

If non-blank, dataset name(s) to be renamed. Ignored if blank. If less
than 40 characters in length (28 for GALS8O libraries), it must be termi-
nated by a blank character.

If DSNAM1 is blank, sequence number of dataset whose name is to be
changed. Else ignored.

New dataset name. If less than 40 characters in length (28 for GAL80
libraries) it must be terminated by a blank character. Fully masked
components allowed.

A posttive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Before the name is changed, GAL-DBM scans the entire TOC for matches. Any active dataset
whose name matches that of the new name argument is deleted.

EXAMPLE 7.27

Rename dataset 68 in library 14 to PHOENIX ASH.II:

CALL GMREND (' ', 14, ' ', 68, 'PHOENIX.ASH.N ', 1900)

Directive Reference

*RENAME DATASET !di,idsn = Dataset_-name

For details, see ref. 5.

7-25

Section 7: BASIC DATASET OPERATIONS

§7.14 SET DAL-DATATYPE CODE: GMTYPE

Entry point GMTYPE is used to set the datatype code of a DAL-conforming dataset identified
by sequence number.

FORTRAN Reference

Calling sequence

CALL GMTYPE (LDI, IDSN, TYPE, TRACE)

Input arguments

LDI Logical Device Index of library file.

IDSN Dataset sequence number.

TYPE DAL-datatype code value (Table 4.1).

TRACE A positive integer used as identifying label in error traceback prints.

Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 7.24

Before GMTYPE is called, the datatype code of a positional dataset is zero. A nominal dataset does
not have a type (its records do).

REMARK 7.25

These datatype codes are only useful for DAL-conforming datasets (§4.2.1). For other positional
datasets (e.g., GAL-conforming) a nonzero type code may be stored through GMTYPE, but it is
innocuous.

REMARK 7.26

If the IDSN'® dataset is of nominal type, this operation is ignored.

EXAMPLE 7.28

Identify dataset at sequence number 81 of library 9 as a variable-length-image text dataset (DAL-
PRO type 5):

CALL GMTYPE (9, 81, 5, 2300)

Directive Reference

None.

7-26

8

Indexed Record
Operations

Section 8: INDEXED RECORD OPERATIONS

§8.1 GENERAL DESCRIPTION

This section covers operations for handling indexed records resident in positional datasets.
These operations are illegal or meaningless if tried on nominal datasets.

Presentation of indexed-record operations is alphabetically ordered by the last four
letters of the entry point name (i.e., common roots GM and LM are disregarded). A
sumrmary entry point list is provided in Table 8.1.

REMARK 8.1

Any user-program subroutine that references one of the following entry points should first identify
itself by calling GMUSER as explained in §14.4. This information is used by the central error
management routine of NICE-DMS for traceback prints.

§8.1 GENERAL DESCRIPTION

Table 8.1. Entry Points for Indexed-Record Operations

Operation Entry Arguments ‘ See
Point
Find end GMFEND LDI, IDSN, TRACE §8.2

LMFEND LDI, IDSN, TRACE

Find record GMFIRE LDI, IDSN, IREC, IOFF, TRACE §8.3
LMFIRE LDI, IDSN, IREC, IOFF, TRACE

Position and GMPORC LDI, IDSN, IREC, A, N, IOFF, TRACE £8.4
read characters LMPORC LDI, IDSN, IREC, A, N, IOFF, TRACE
Position and GMPORN LDI, IDSN, IREC, A, N, IOFF, TRACE §8.4
read numerics LMPORN LDI, IDSN, IREC, A, N, IOFF, TRACE
Position and GMPOWC LDI, IDSH, IREC, A, N, IOFF, TRACE §8.4
write characters LMPOWC LDI, IDSHN, IREC, A, N, IOFF, TRACE
Position and GMPOWN LDI, IDSM, IREC, A, N, IOFF, TRACE 88.4
write numerics LMPOWN LDI, IDSH, IREC, A, N, IOFF, TRACE
Print records GMSHOP 0op, LDI, IDSN, IREC1, IREC2, §8.5

PFORM, M, IOFF, TRACE
Transfer characters GMTRAC OP, LDI, A, N, TRACE §8.6

Transfer numerics GMTRAN OP, LDI, A, N, TRACE §8.6

Sectlon 8: INDEXED RECORD OPERATIONS

§8.2 FIND DATASET END: GMFEND/LMFEND

Two entry points: GMFEND and LMFEND may be used to position the library device to the
end of an indexed-record dataset. This operation is normally done as a prelude to an
append-record operation using GMTRAN or GMTRAC.

GMFEND is referenced as a subroutine whereas LMFEND is referenced as an integer func-
tion. Both take as inputs the Logical Device Index and dataset sequence number. LMFEND
returns, as function value, the number of words that can be appended to the dataset.

FORTRAN GMFEND Reference

Calling sequence

CALL GMFEND (LDI, IDSN, TRACE)

Input arguments

LDI Logical Device Index of library device.
IDSN Dataset sequence number.
TRACE A positive integer used as identifying label in error traceback prints.

Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 8.2

On error-free return from this operation, the IDSU'" dataset is the active dataset, and the library
device is positioned at the dataset end.

REMARK 8.3

This operation works correctly for all types of indexed-record datasets, whether GAL-conforming
or not.

REMARK 8.4

This operation, as well as LMFEND below, is illegal for nominal datasets, since the term “dataset
end” is then meaningless.

REMARK 8.5
The main use of GMFEND is to make the IDSN'" dataset the active one.

8-4

§8.2 FIND DATASET END: GMFEND/LMFEND

FORTRAN LMFEND Reference

LMFEND performs exactly the same job as GMFEND, but is referenced as an integer function:

MORE = LMFEND (LDI, IDSN, TRACE)

Input arguments
The three input arguments are identical to those of GMFEND.

Function return

LMFEND Number of words that can be appended to the dataset.
A zero return value means one of three things:
(a) the dataset cannot be expanded;
(b) the dataset is locked as read-only (Table 3.2); or

(c) an error was detected.

REMARK 8.6

LMFEND is generally preferable to GMFEND, as the example below makes plain. GMFEND should be used
only if you are sure, beyond a reasonable doubt, that nothing can go wrong with the subsequent
record append.

EXAMPLE 8.1

Append a 250-word record in array B to dataset AAA.BBB.3.0.0 of library 6 if there is enough
room to do so. If there is not enough room, move the dataset to the end of the data library and

append the record.

1200 IDSN = LMFIND (6, 'AAA.BBB ', 1300)

IF (IDSH .GT. 0) THEN
IF (LMFEND (6, IDSH, 1700) .LT. 250) THEN
CALL GMCOPS (6, IDSH, 6, ...)
IF (LMERCD(IERR) .NE. 0) CALL ERROR (IERR)
GO TO 1200
END IF
CALL GMTRAN ('W/A', 6, B, 250, 1500)

END IF

8-5

Section 8: INDEXED RECORD OPERATIONS

§8.3 FIND INDEXED RECORD: GMFIRE/LMFIRE
GMFIRE and LMFIRE are used to position the library device to the start of an indexed record.
GMFIRE is called as a subroutine while LMFIRE is referenced as an integer function.

The inputs are the Logical Device Index, dataset sequence number, record index and
offset from record start. If the record exists, its size is returned by LMFIRE as function

value.

This operation is guaranteed to work correctly only for DAL- and GAL-conforming
positional datasets. (see Remark 8.9 for more details).

FORTRAN GMFIRE Reference

Calling sequence

CALL GMFIRE (LDI, IDSN, IREC, IOFF, TRACE)

Input arguments

LDI Logical Device Index of library device.
IDSN Dataset sequence number. A zero implies the active dataset.
IREC The record index. IREC = O calls for the descriptor record. See Remark

8.10 for the effect of an out-of-bounds IREC.

IOFF Record-offset argument: I0OFF = O positions to record start. If nonzero,
position GAL library at I0FF words from the record start. For restric-
tions on the use of nonzero IOFF, see Remarks 8.11.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 8.7

This operation is illegal for nominal datasets.

REMARK 8.8

On successful return from this operation, the library device is positioned at record start if
IOFF = 0, otherwise, at IOFF words from it.

REMARK 8.9

This operation works correctly only if record lengths meet the constraints outlined in §4.2 for
GAL-conforming datasets (which include DAL-conforming datasets as a special case). For more
general record-length distributions (the so-called “wild datasets”), GMFIRE will position correctly
to records 0, 1, 2, 3, last and next-to-last, but not necessarily otherwise. As GAL-DBM tacitly
assumes that all positional datasets are GAL-conforming, incorrect positioning is undetectable.

8-6

§8.3 FIND INDEXED RECORD: GMFIRE/LMFIRE

REMARK 8.10

If the record index is too large (exceeds number of stored records), the library is position to
the dataset end, just like GMFEND (§8.2). IOFF is then ignored.

REMARK 8.11

A nonzero IOFF should not be used for character records, because the results will generally be
unpredictable. If you must offset, consider using GMPORC/GMPOWC (§8.4).

REMARK 8.12

A nonzero I0FF should not be used for DAL libraries, because these have sector addressability
and cannot “remember” word offsets.

FORTRAN LMFIRE Reference

LMFIRE performs exactly the same job as GMFIRE, but is referenced as an integer function:

Lﬁsxzz = LMFIRE (LDI, IDSN, IREC, IOFF, TRACE) J

The five arguments have the same meaning as for GMFIRE. The function output is:

LMFIRE Zero if record is not in dataset, or an error was detected. Otherwise size of
record. Size is given in words if IREC > 1, or in characters if IREC is zero.

REMARK 8.13

The function form is handy when the record size return is only to be used in an IF statement for
testing the presence or absence of a record, as in the example below.

EXAMPLE 8.2

If dataset AAA.BBB.0.0.0is in library 7, read its second record into array B:

IDSN = LMFIND (4, 'AAA.BBB ', IDSH, 1300)
IF (IDSN .GT. 0) THEN
N = LMFIRE (4, IDSN, 2, 0, 1700)
IF (N .GT. 0) THEN
CALL GMTRAN ('R', 4, B, lI, 1500)
END IF
END IF

[g
aJt
Fi

Sectlon 8: INDEXED RECORD OPERATIONS

EXAMPLE 8.3

If dataset STIFFNESS.MATRIX in library 3 has no second record, write a 60-word zero-filled record
in the second record.

IDSN = LMFIID (4, 'STIFFNESS.MATRIX ', IDSNI, 1300)
IF (IDSN .GT. 0O) THEH
IF (LMFIRE (4, IDSN, 2, 0, 1700) .EQ. 0) THEN
CALL GMTRAN ('W/F', 4, 0, 60, 1500)
END IF
END IF

§8.4 POSITION AND READ/WRITE: GMPOzz/LMPOzz

§8.4 POSITION AND READ/WRITE: GMPOzz/LMPOzz

Entry points GMPOzr and LMPOzz, where zz = RC, RN, WC or WN, combine library
positioning and physical data transfer in a single operation. They can be used to read or
rewrite existing records or segments of existing records. They cannot be used to create new
records, or to extend the last record, a job which is reserved to GMTRAN/GMTRAC (§8.6).

The eight entry points are collectively described here, as they share the same calling
sequence. The dataset record, or segment thereof, is defined by Logical Device Index,
dataset sequence number, record index, and offset from record start. The main-storage
array is defined by its address and length. Record lengths and offsets are reckoned in words
for numerical records and characters for character records.

These operations are legal only on positional datasets resident in word-addressable
GAL devices. They are illegal on DAL files, or on nominal datasets.

FORTRAN GMPOzz References

The calling sequence for the four entry points is:

CALL GMPOzzr (LDI, IDSN, IREC, A, N, IOFF, TRACE)

The entry-point name combinations are:

GMPORC Position and read character data.
GMPORN Position and read numeric data.
GMPOWC Position and write character data.
GMPOWN Position and write numeric data.

Input Arguments

LDI Logical Device Index of library device.

1DSH Dataset sequence number.

IREC Record index.

A zz = RC: character array that receives record.

rz = RN: numeric array that receives record.
rz = WC: character array to be stored.

zr = WN: numeric array to be stored.

N The absolute value of I is the maximum number of characters (zz = RC
or WC) or words (zr == RN or WN) to be read (zz = RC or RN) or
written {(zz = WC or WN). A negative value of N assures that the read
or write will not extend beyond the boundary of the dataset. A positive

8-9

Section 8: INDEXED RECORD OPERATIONS

value of N assures that the read or write will not extend beyond the
boundary of the IRECt* record. A value of zero for N will cause GMPORN
and GMPOWN to position only, and GMPORC and GMPOWC to use the implicit
length of A for N.

If the calling program needs to find out how many characters or words
have been actually transferred, the function entry points LMPOzz dis-
cussed below should be used instead.

I0FF zzr = RC: offset in characters at which read is to begin.
rzz = RN: offset in words at which read is to begin.
rz = WC: offset in characters at which write is to begin.

zz = WN: offset in words at which write is to begin.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 8.14

If the library device is of DAL form, or the IDSH'" dataset is nominal, an error exit is taken.

REMARK 8.15

On exit from any of these operations, the library position is unpredictable.

REMARK 8.16

If the record does not exist, or if IOFF puts the read or write totally out-of-bounds, no data
transfer occurs. This condition is not reported as an error condition.

FORTRAN LMPOzz References

The four entry points discussed in this section may also be invoked as integer functions:

NX = LMPOzz (LDI, IDSN, IREC, A, I, IOFF, TRACE)

where zz is again RC, RN, WC or Wll. The seven arguments have identical meaning. The
function value returns the number of characters or words actually transferred. This value
may be zero if an error occurs or if the read/write is totally out of dataset bounds.

REMARK 8.17

If the record does not exist, or if IOFF puts the read or write totally out-of-bounds, no data
transfer occurs. The function returns zero.

8-10

§8.5 PRINT RECORDS: GMSHOP
§8.6 PRINT RECORDS: GMSHOP
GMSHOP provides a type-directed display of the contents of positional dataset records.

FORTRAN GMSHOP Reference

Calling sequence

CALL GMSHOP (OP, LDI, IDSN, IREC1, IREC2, PFORM, M, IOFF, TRACE)

Input arguments

oP A character string that specifies print options.

D Place dataset name in label.

R Place record ID in label.
X Suppress title line.
V Force TTY print.
W Give warning if no records found.
LDI Logical device index of library file.
IDSH Dataset sequence number.
IREC1 Index of first record to be printed (> 0)
IREC2 Index of last record to be printed (> 0)
PFORM Print format specification. If blank, GMSHOP will try to think of some-
thing.
M If M > 0, limit record print to M items.
IOFF Offset to first printed item. Applies to all records. Normally zero.
TRACE Error traceback argument. Do not use a zcro or negative value here;

these values are reserved for internal use.

EXAMPLE 8.4
Print the first 3 records of dataset number 6 on library 10.

CALL GMSHOP('DR’,10,6,1,3,"' ’,0,0,100)

8-11

Section 8: INDEXED RECORD OPERATIONS

§8.6 TRANSFER DATA: GMTRAz

GMTRAz, where z = C or N, are standard entry points for reading or writing indexed records.
GMTRAC is used for character records whereas GMTRAN is used for numeric records. Both
require appropriate prepositioning of the library device to the location at which the read
or write is to take place.

GMTRAz consolidates the functions of a number of entry points treated in the pre-
vious version of this document: GMREAD, GMREAC, GMWRIN, GMWRIB, GMWRIT, GMWRIC,
GMWRIZ, LMRDES and LMWDES.

For the current GAL-DBM version, GMTRAC and GMTRAN provide the only way to
perform the following operations: (1) appending indexed records to GAL or DAL datasets;
(2) reading, writing or rewriting DAL records.

FORTRAN GMTRAz Reference

Calling sequence

| CALL GMTRAz (OP, LDI, A, li, TRACE)

The entry-point name combinations are:

GMTRAC Transfer character data.
GMTRAN Transfer numeric data.

Input arguments

oP A character string that specifies the operation to be performed. It con-
sists of a mainkey optionally followed by qualifiers. For example:

OP = "WRITE/FILL’

Here WRITE is the mainkey whereas FILL is a qualifier. A list of valid
mainkeys and qualifiers appears in Table 8.2.

Mainkeys and qualifiers may be abbreviated to the “roots” shown in

Table 8.2.

LDI Logical Device Index of library device.

A z=0C,0P = 'R’: character string that receives record.
z = C, 0P = 'R/D’': character string that receives descriptor record.
r=C,0P = 'W/A': character string to be appended as new record.
r=2C,0P = 'W/D': character string to be written to descriptor record.
£=C,0P = 'W/F': A(1:1) is fill character.
r=C,0P = 'W/U': character string to be rewritten at current location.

8-12

§8.6 TRANSFER DATA: GMTRAZ

z= N, 0P = 'R': numeric array that receives record.
z=N,0P = 'W/A': numeric array to be appended as new record.
x=N,0P = "W/F': A(1) is fill word.
z = N,0P = 'W/U’: numeric array to be rewritten at current location.
z=N,0P = 'W/X': numeric array to be appended as last-record exten-
sion.

N z = C: number of characters to be read or written. If I = 0, LEN(A) is
used.

z = N: number of words to be read or written.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Library Prepositioning

Unlike the GMPOzz entry points (§8.4), the calling sequence of GMTRAz contains no dataset
or record identifiers. These items are implicitly defined by prior operations on the target
data library, and by the OP argument.

It follows that references to GMTRAC or GMTRAN cannot occur in isolation, but must be
appropriately prepared. The preparation procedure is called library prepositioning. Table
8.3 lists recommended prepositioning procedures corresponding to common OP settings.
These procedures are safe in the sense that it is sometimes possible to take shortcuts and
get away with it, but subsequent modifications in the user program may cause problems.

REMARK 8.18

The omission of dataset and record identifiers from GMTRAz is not, by the way, accidental. The
resulting low processing overhead makes these routines very efficient for sequentially reading or
writing indexed record streams. This situation is precisely the kind of situation in which positional
datasets hold a definite edge over nominal datasets.

EXAMPLE 8.5
See Examples in §§8.2-8.3.

8-13

Sectlon 8: INDEXED RECORD OPERATIONS

Table 8.2. OP Argument (Mainkeys and Qualifiers) for GMTRA«<z

Mainkey Root Effect

READ R Read; see qualifiers for details

WRITE W Write; see qualifiers for details

none READ assumed
Qualifier Root Valid for Effect

mainkeys

APPEND A W Append new indexed record
DESCRIPTOR D R.W Read or write descriptor; GMTRAC only
FILL F W Fill with A(1)
UPDATE U W Rewrite at current location
XTEND X W Fxtend last record; GMTRAN only
none R Read at current location
none W W/A if library is positioned at end of

dataset; else W/U

8-14

§8.6 TRANSFER DATA: GMTRAZ

Table 8.3. Library Prepositioning for GMTRAz

OP Argument

Preposttioning

R/D

W/A or W/A/F

W/D

W/U or W/U/F

W/X or W/X/F

Call LMFIRE or GMFIRE to set target record and
offset. Successive calls to GMTRAz to read con-
secutive records, or segments of one record, are

permitted.

Call LMFIRE or GMFIRE with IREC=IOFF=0.

Call LMFEND or GMFEND to position to dataset
end. (This may be dispensed with if (a) this is
record #1 and (b) the previous GAL-DBM ref-
erence is a call to GMPUNT (or GMPUNT/GMREDS)
to install dataset.) Successive calls to GMTRAzZ
to write-append consecutive dataset records

are permitted.

Call LMFIRE or GMFIRE with IREC=IO0FF=0.
(This may be dispensed with if the previous
reference to GAL-DBM is a call to GMPUNT (or
GMPUNT/GMREDS) to install dataset.)

Same as for R.

Essentially the same as for W/A, but more com-
plicated. Only experienced users should use

the X qualifier.

9

Named Record
Operations

Sectlon 9: NAMED RECORD OPERATIONS

§9.1 GENERAL DESCRIPTION

This section covers operations on named records. The generic operations are get and put,
which together take care of initialization, space reservation, retrieval, seeking, storage and
updating of named records.

Complementing the basic get/put operations are information retrieval entry points to
get attributes such as record group high/low cycles, etc, print RAT, print records, delete
and rename records. Nominal-dataset display operations are: list Record Access Table and
print record contents. The record or record(s) subject of these operations are identified by
name; consequently, these operations are illegal on positional datasets.

The presentation of named-record operations in this Section is alphabetically ordered.
A summary entry point list is provided in Table 9.1.

REMARK 9.1

Any user-program subroutine that references one of the following entry points should first identify
itself by calling GMUSER as explained in §14.4. This information is used by the central error
management routine of NICE-DMS for traceback prints.

§9.1 GENERAL DESCRIPTION

Table 9.1 Entry Points for Named-Record Operations

Operation Entry Arguments See
Point

Delete record(s) GMDERT 0P, LDI, IDSH, RHAME, TRACE §9.2

Get Group cycles GMGECY 0P, LDI, IDSH, RKEY, NREC, IL, IH, TRACE §9.3

Get Key Attributes GMGEKA 0P, LDI, IDSH, RKEY, RTYPE, N, M, TRACE §9.4

Get record (S) GMGETz OP, LDI, IDSH, RNAME, TYPE, A, N, M, §9.5
IGAP, IOFF, TRACE

List RAT GMLIRT 0P, LDI, IDSN, RKEY, LISTYP, TRACE §9.6

Print record(s) GMSHOR OP, LDI, IDSH, RNAME, PFORM, M, IOFF, §9.7
TRACE

Rename record(s) GMRERT OP, LDI, IDSN, OLDKEY, NEWKEY, TRACE §9.8

Put record(s) GMPUTz op, LDI, IDSH, RNAME, TYPE, A, N, M, §9.9

IGAP, IOFF, TRACE

Section 9: NAMED RECORD OPERATIONS

§9.2 DELETE RECORD(S): GMDERT

Entry point GMDERT marks one or more named records as pertaining to a dataset as deleted.
Deletion is performed by removal or modification of packets of the Record Access Table
(RAT) of the dataset. If the operation results in the removal of a packet, a RAT compres-

sion may ensue.

Unlike datasets, deleted records cannot be enabled back to an active status. Space
occupied by deleted records can be reclaimed on a pack operation.

FORTRAN Reference

Calling sequence

Input Arguments

opP

LDI
IDSN

RNAME

TRACE

CALL GMDERT (OP, LDI, IDSN, RNAME, TRACE)

A character string containing operation specifications. Presently:

K Delete by key. Argument RNAME is then a record key, and all
records having that key are deleted. Cycles disregarded.

P Compress RAT if record deletion results in one or more RAT
packets being vacated.

W Print warning if nothing deleted.
Logical Device Index of library device.
Sequence number of owner dataset.

A name that identifies the record(s) to be deleted. The specification
takes different forms according to whether option K is specified in argu-
ment OP. If K is not specified, the general form is

Key.nj:ng
and all records that intersect with this specification are deleted. An
error condition may occur if one tries to delete intermediate cycles from
a record group (see Remark 9.2). Masking specifications on the record
key are acceptable if the cycles are explicitly given. If the K option is
given in argument OP, only the key needs to be given. Specifying RHAME
= *%' in conjunction with OP = 'K’ results in all records being deleted.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

§9.2 DELETE RECORD(S): GMDERT

REMARK 9.2

Deleting cycles from a record group may be a risky business. For example, suppose that record
group Z.10:46 uses a RAT packet, and consider the effect of requesting the deletion of

126
50
30

NN~
N W o

.35:
.20:
The first two specifications are legal. Upon return from GMDERT, the record group is truncated
to Z.26:45 and Z.10: 34, respectively. But the last request is illegal because it would result in a
split record group, which cannot be managed from a single packet, and an error condition will be
reported.

Section 9. NAMED RECORD OPERATIONS

§9.3 GET GROUP CYCLES: GMGECY

Entry point GMGECY returns the lowest and highest defined cycles of a record group, given
the record key. The record group may be unsegmented or segmented.

FORTRAN Reference

Calling sequence

CALL GMGECY (OP, LDI, IDSN, RKEY, NREC, IL, IH, TRACE)

Input Arguments

‘ oP A character string containing operation specifications. Not presently
used.
LDI Logical Device Index of library device.
IDSN Dataset sequence number.
RKEY Record Group key.
TRACE A positive integer used as identifying label in error traceback prints.

Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments
NREC Number of records found. If key is undefined, NREC = 0.

IL, IH If NREC >.0, low and high record cycles, respectively. For an unseg-
mented record group, NREC = IH—IL+1 is guaranteed; not so, however,
for a segmented one if cycle gaps occur.

If \REC = 0, IL = IH = —1.

EXAMPLE 9.1

Retrieve low and high cycles of unsegmented record group keyed NODES, located in dataset
GEOMETRIC . TABLES of library 7:

IDSN = LMFIND (7, 'GEOMETRIC.TABLES ', 1600)
CALL GMGECY (' ', 7, IDSN, 'NODES ', KREC, ILO, IHI, 1700)

9-6

§9.4 GET KEY ATTRIBUTES: GMGEKA

§9.4 GET KEY ATTRIBUTES: GMGEKA

GMGEKA is a “key attribute” retriever. It is given as input a record key and the library and
dataset in which it resides. It returns as output the attributes that are invariant across all
records with that key, namely data type, item length, and first dimension value.

FORTRAN Reference

Calling sequence

CALL GMGEKA (OP, LDI, IDSN, RKEY, RTYPE, W, M, TRACE)

Input Arguments

oP A character string containing operation specifications. Presently this is
a dummy argument, so it should be set to ’ .

LDI Logical Device Index of library device.
IDSN Dataset sequence number. A zero implies the active dataset.
RKEY A character string containing the record key left-justified. If the num-

ber of characters is less than the maximum key length, it should be
terminated by blank-fill.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments

RTYPE If records identified by RKEY exist, then their data type is RTYPE (as
defined in Table 5.1). Otherwise blank.

il If records identified by RKEY exist, then their logical length is N. Other-
wise zero.
M If records identified by RKEY exist, then their first matrix dimension

attribute is M. Otherwise zero.

EXAMPLE 9.2

Retrieve attributes of record key VELOCITIES in dataset at sequence number 181 in library con-
nected to LDI 15:

CALL GMGEKA (* ', 15, 181, 'VELOCITIES ', RT, L, M, 1700)

where RT is a CHARACTER*1 variable.

9-7

Section 9: NAMED RECORD OPERATIONS

§9.6 GET NAMED RECORD(S): GMGETz

GMGETN (get numerics) and GMGETC (get characters) are the standard entry points for
accessing eristing named records. “Accessing” means reading or finding. Reading means
that stored-record data is transferred into a main storage array, whereas finding implies
that the dataset is searched to acquire length and type information albeit no data transfer
occurs. The operation may involve a single record, a record group, or a table.

The two entry points are collectively described here as they share the same calling
sequence. An operation key specifies various options. The database record(s) are described
by the Logical Device Index, dataset sequence number, and a record name; the latter
may involve key concatenation and cycle ranges. If records are to be read, a destination
main storage array is specified, as well as variables to receive record size and type. Size
constraints may be specified on input.

FORTRAN Reference

Calling sequence

[CALL GMGETz (OP, LDI, IDSN, RNAME, TYPE, A, N, M, IGAP, IOFF, TRACE)]

The entry-point names are:

GMGETC Get character record(s).
GMGETN Get numeric record(s).

Input Arguments

OP A character string that specifies the operation to be performed. It con-
sists of a mainkey optionally followed by one or more qualifiers. For
example:

0P = 'READ/LENGTH’
Here READ is the mainkey while LENGTH is a qualifier. There can be only
one mainkey but several qualifiers (or none). A list of valid mainkeys
and qualifiers appears in Table 9.2, Mainkeys and qualifiers may be
abbreviated to the one-letter “roots” shown there.

LDI Logical Device Index of library device.
IDSH Dataset sequence number. A zero implies the active dataset.
RNAME A character string containing the name of the record, record group,

or table to be accessed. This string should be terminated by a blank
character for safety.

What if no records by this name are found? See Remark 9.4.

TYPE If OP mainkey is READ, external datatype code (Table 5.1) of variable or
array that will receive data (the argument A). Generally this type should

9-8

IGAP

IOFF

TRACE

§9.5 GET NAMED RECORD(S): GMGETz

match that of the record(s) you want to retrieve. However, GMGETN will
do certain numeric conversions for you; the ones presently allowed are
shown in Table 9.3. If the datatype misiatch is not one of these, the
operation aborts. See remark 9.6 below for TYPE =’

If OP mainkey is FIND, TYPE is an output argument {see helow).

If OP mainkey is READ, array that will receive record, Record Group, or
Table. For GMGETC, A must be a character string or character array. For
GMGETN, A must be a numeric array of the type specified by TYPE. For
multi-record read, see IGAP below.

If OP mainkey is FIIND, A is a dummy argument. If you are calling GMGETN,
put a zero here. If you are calling GMGETC, put a blank character here.

If OP is READ and LENGTH appears as qualifier, N is an input-output
argument. The input value of N may be positive or negative.

An input ¥ > O tells GMGETz: “do not read more than N items”. This
liit usually reflects the main-storage allocation of A in the calling pro-
gram and is specified as a safety factor against array overspill.

An input N < O tells GMGETz: “do not read more than |N| items per
record”. This has some applications when reading record groups or ta-
bles; see example. For individual record retrieval, +N and -N are equiv-
alent.

If LENGTH is not a qualifier, I is only an output argument.

A dummy integer argument unless qualifier MATRIX appears, in which
case M is an output argument (see below).

If OP qualifier is READ, this argument is applicable to multi-record trans-
fer as follows: skip IGAP items in array A when incrementing the cycle
number; but leave no gap if IGAP = 0. See examples.

If OP mainkey is READ: begin record read at IOFF items from record start.
If OP mainkey is FIND, IOFF is a dummy integer argument.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

Output Arguments

TYPE

If OP mainkey is FIND, external datatype code (Table 5.1) of stored
record(s). (Should be declared CHARACTER*1 in calling program.)

If RNAME specifies a Table, and records are found to be of different types,
TYPE = 'M' (Mixed) is returned.

9-9

Section 9: NAMED RECORD OPERATIONS

A If OP mainkey is read, A receives record data found by GMGETC or GMGETN.
The configuration of A upon multi-record read (Record Group or Table)
is illustrated by Examples 9.3 through 9.12.

N If OP mainkey is READ, I returns total number of items read into A.
If OP mainkey is FIND, N returns total number of items found.

If no record is found, or an error is detected before the record search
starts, N returns zero.

M If qualifier MATRIX appears, M returns the “first matrix dimension” stored
by GMPUT .

REMARK 9.3

The use of mainkey FIND is admittedly rare now that information-retrieval entry points GMGEKA
and GMGECY are available. These entry points are not so comprehensive but have a simpler calling
sequence.

REMARK 9.4
GMGETz produces no diagnostics if a record specified by RIAME is not found, or even if nothing is
found. The user program may check the output Il to make sure that the requested data is there.
For example, suppose that RHAME = 'QUERCUS.1:80 ', where each record is 10-items long, but
only QUERCUS.3:6 are actually stored in the dataset. Only 4 records will be read, and the exit N
= 10 x4 = 40.

REMARK 9.5

If it is important to determine in advance whether a record or record group exists, call GMGETz
with OP = *FIND’, To find out the cycle range of a record group, use GMGECY (§9.3). See example
for a realistic application of these “query” routines.

REMARK 9.6

If TYPE is declared unknown (U) on a GMGETN read operation, numeric records of any datatype
will be moved to A without conversion. (This mimics the modus operandi of positional datasets.)
But this is not allowed for character records; these have to be read using GMGETC, and the input
datatype must be A.

9-10

§9.5 GET NAMED RECORD(S): GMGETz

Table 9.2. OP Argument (Mainkeys and Qualifiers) for GMGETz

Mainkey Root Effect L
FIND F Find record(s) and return information.
READ R Read records into argument array.

none _ _ READ assumed. _ __

Qualifier Root Valid for Effect

mainkeys _
LENGTH L READ Il is an input-output argument
MATRIX M READ,FIND _ Return first matrix dimension in M.

Table 9.3. Mixed Datatype Handling by GMGETz

Database: Integer S-float D-float Complex Character

Argument

Integer Yes No No No No
S-Float No Yes Yes No No
D-Float No Yes Yes No No
Compler No No No Yes No
Character No No No No Yes
Unknown,_ Yes . . Yes Yes. .. Yes______No

9-11

Section 9: NAMED RECORD OPERATIONS

EXAMPLE 9.3

To illustrate the use of GMGETN and GMGETC, the following Table-compatible four record
groups are assumed to be present in dataset 55 of library 7:

S J XYZ ABCD

S1 J I1,Y1,21 ay,by, ey, d;
S2 J2 T2,Yy2,22 agz,by,cz,d>
S3 Ja T3,ys,23 ag,bs,c3,ds3
S4 J4 T4,Ya,24 a4,b4,c4,d4
ss Js Ts,Y5,25 as,bs,c5,ds
S6 Jo TG, Y6, 26 ag, bg, g, da

§.1:8 contain 8-character records, J.1:6 contains 1-item integer records, XYZ. 1:6 contains 3-item
double-precision records, and ABCD.1:6 contains 4-item double-precision records. Each record of
ABCD may be viewed as a 2 x 2 matrix:

should a matrix interpretation be requested.

EXAMPLE 9.4
Read j; into integer variable JVAL.

CALL GMGETN ('R', 7, 55, 'J.2 ', 'I', JVAL, N, 0, 0, O, 1200)
On successful exit: JVAL = j2, N = 1.

EXAMPLE 9.5

Read z3,y3, 23 into double-precision array XYZC:

DOUBLE PRECISION XY2C(3)

CALL GMGETN ('R', 7, 65, 'XYZ.3 ', 'D', XYzC, I, 0, O, O, 1200)

On successful exit: XYZC = (x3,y3,23), N = 3.

EXAMPLE 9.6
Read only z3,y3 into XY(1:2).

DOUBLE PRECISION XY(2)
N=2

CALL GMGETN ('R/L’, 7, 55, 'XYz.3 ', 'D’, XY, I, 0, 0, O, 1200)

On successful exit: XY = (z3,y3), I = 2.

9--12

§9.5 GET NAMED RECORD(S): GMGE Tz

EXAMPLE 9.7
Read XYZ.1:8 into single-precision array XYZ dimensioned 3 x 6 in the calling program.

REAL XYZ(3,6)

CALL GMGETN ('R', 7, 55, ’XYZ.1:6 ', 'S’', XYZ, N, 0, 0, O, 1200)

Note that IGAP = O because retrieved records are compactly stored in XYZ. On successful exit,
XYZ(1:3,1) = (x:,¥.,2:),t = 1,...6; N = 18. GMGET! automatically converts double-precision to
single-precision.
EXAMPLE 9.8

Read XYZ.1:4 into first three rows of single-precision array CTAB dimensioned 8 x 6 in the calling
program.

REAL CTAB(8,6)
CALL GMGETN ('R’, 7, 55, 'XYZ.1:4 ', 'S’, CTAB, NI, 0, 5, 0, 1200)

The IGAP argument is here 8 — 3 = 5. On successful exit: CTAB(1:3,1) = (z;,...d,),7 =1,..4;N =
12. GMGETHN automatically converts double-precision to single-precision.

EXAMPLE 9.9
Read §.1:4 into a character array €S dimensioned C5(4) #24.

CHARACTER*24 CS(4)

CALL GMGETC ('R', 7, 565, 'S.1:4 ', 'A', CS, UI, 0, 16, O, 1200)
IGAP is 24 — 8 = 16. On successful exit: €S(2)(1:8) = s,,1 =1,2,3,4; I = 32.
EXAMPLE 9.10

Read XYZ.1:8 and ABCD.1:6 into first seven rows of single-precision array CTAB dimensioned 8 x 6
in the calling program.

REAL CTAB(8,6)

CALL GMGETN ('R', 7, 55, 'XYZ&ABCD.1:6 ', 'S’', CTAB, lI, 0, 1, O, 1200)

The IGAP argument is now 8 — 3 - 4 = 1. On successful exit: CTAB(1:7,1)== (1.,Y, ... ¢;,di), 1 =
1, ...6; N = 42. GMGETHN automatically converts double-precision to single-precision.

9-13

Sectlon 9: NAMED RECORD OPERATIONS

This example illustrates key-concatenation retrieval. The general rules are:
(a) keys run faster than cycles, and
(b) no gaps between records with same cycle.

Observe that had the key specification been
ABCD&XYZ

items would have been retrieved in the order a,,b,,¢;,d., x., ¥y, 2.

EXAMPLE 9.11

(Advanced.) Read the y; item only of XYZ.1:6 into the second row of double-precision array XYZ
dimensioned 3 x 6.

DOUBLE PRECISION XYZ(3,6)

N=-1
CALL GMGETN ('R/L’, 7, 55, °XYZ.1:6 ', 'D’, XYZ(2,1), N, O, 2, 1, 1200)

Here IGAP = 3-1 = 2 , IOFF = 1. On successful exit: XYZ(2,1)=y;,t=1,...,6;N = 6.

EXAMPLE 9.12
Find out all there is to know about record group key ABCD.

CHARACTER RNAM*20, RTYP=*1

CALL GMGECY (' ', 7, 65, 'ABCD ', NR, ILO, IHI, 1600)
IF (NR .GT. O) THEN

CALL GMCORN (RNAM, 'ABCD ', ILO, IHI)

CALL GMGETN ('F/M’, 7, B5, RNAM, RTIYP, O, N, M, 0, O, 1600)
END IF

(GMCORN, construct a record name string; it is described in §10.6.) On GMGETN exit: RNAM =
"ABCD.1:6 ', RTYP = ‘D’ N = 24,M = 2.

9-14

§9.6 LIST RECORD ACCESS TABLE: GMLIRT

§9.6 LIST RECORD ACCESS TABLE: GMLIRT

GMLIRT lists the Record Access Table (RAT) of a nominal dataset.

FORTRAN Reference

Calling sequence

CALL GMLIRT (OP, LDI, IDSN, RKEY, LISTYP, TRACE)

Input Arguments

OP

LDI

IDSN

RKEY

LISTYP

TRACE

Option letter string. Presently D to list deleted records.
Logical Device Index of library file.
Dataset sequence number. A zero requests the active dataset.

If nonblank, a generally-masked record key that limits RAT display to
packets with that key.

A one-letter string that specifies the list format.
F Full listing
* Simplified listing
A positive integer used as identifying label in error traceback prints.

Do not use a zero or negative value here; these values are reserved for
internal use.

Section 9: NAMED RECORD OPERATIONS

§9.7 PRINT RECORD CONTENTS: GMSHOR

GMSHOR prints the contents of a record, record group or table according to user-program
formatting specifications. This routine replaces GMPRIN.

FORTRAN Reference

Calling sequence

CALL GMSHOR (OP, LDI, IDSN, RNAME, PFORM, M, IOFF, TRACE)

Input Arguments

oP Print options string.

D Place dataset name in label.

K Print by key (all cycles).

R Place record id in label.

X Suppress title line.

v TTY print with RV if on a VT-100 display terminal
LDI Logical Device Index of library file.
IDSN Sequence number of owner’s dataset.
RNAME Record name, possibly with masking specifications.
PFORM Print format specification.
M If M>0, print at most M items per record.
I0FF Offset to first printed itemn; presently ignored.
TRACE Error traceback argument.

9-16

89.8 RENAME RECORD(S): GMRERT

§9.8 RENAME RECORD(S): GMRERT

Entry point GMRERT lets you rename record keys. Record cycles remain unchanged.
FORTRAN Reference

Calling sequence

CALL GMRERT (OP, LDI, IDSN, OLDKEY, NEWKEY, TRACE)

Input Arguments

oP A character string containing operation specifications. Presently W to
print a warning if no records matched.

LDI Logical Device Index of library device.

IDSN Dataset sequence number. A zero requests the active dataset.

OLDKEY A character string containing the old record key left-justified blank-filled.

NEWKEY A character string containing the new record key left-justified blank-
filled.

TRACE A positive integer used as identifying label in error traceback prints.

Do not use a zero or negative value here; these values are reserved for
internal use.

EXAMPLE 9.13

CALL GMRERT (' ', 12, 173, 'VELOCITY', 'SPEED ', 1700)

9-17

Section 9: NAMED RECORD OPERATIONS

§9.9 PUT NAMED RECORD(S): GMPUTz

GMPUTN (put numerics) and GMPUTC (put characters) are the standard entry points for
creating or updating named records. The operation may involve a single record or a record
group, but not a table.

The two entry points are collectively described here as they share the same calling
sequence. An operation key specifies various options. The database record(s) are described
by the Logical Device Index, dataset sequence number, and a record or record group
name. The source main storage array is specified by its address, length and datatype.
Miscellaneous specifications include gaps between group records in the main-storage array,
and a matrix dimension.

FORTRAN Reference

Calling sequence

CALL GMPUTz (OP, LDI, IDSN, RIIAME, TYPE, A, N, M, IGAP, IOFF, TRACE)

The entry-point names are:

GMPUTC Put character record(s).
GMPUTN Put numeric record(s).

The arguments (all input) are:

oP A character string that specifies the operation to be performed. It con-
sists of a mainkey optionally followed by one or more qualifiers. For
example:
QP = 'WRITE/REPEAT’
Here WRITE is the mainkey while REPEAT is a qualifier. A list of valid

mainkeys and qualifiers appears in Table 9.4. Mainkeys and qualifiers
may be abbreviated to the “roots” shown there.

LDI Logical Device Index of library device.
IDSN Dataset sequence number.
RNAME A character string containing the name of the record or record group to

be written to. Table specifications (concatenated keys) are not permit-
ted. For safety, the name should be terminated by a blank character.
Record-update rule if qualifier U is not given. If a record or record group
by this name already exists in the dataset, it is rewritten if (a) datatype
agrees, and (b) length fits. Otherwise the existing record(s) are marked
as deleted and new one(s) created.

Record-update rule if qualifier U is given. If update of existing record(s)
is feasible, do it, otherwise skip.

9-18

TYPE

IGAP

IOFF

TRACE

EXAMPLE 9.14

§9.9 PUT NAMED RECORD(S): GMPUTz

The one-letter external datatype code (see Table 5.1) of record or record
group to be stored. Code U (Unknown) and M (Mixed) are not permitted.

If OP mainkey is WRITE, source array containing record(s) to be writ-
ten. For a record group, successive records are adjacent if IGAP = O, or
separated by IGAP items if IGAP > 0.

If the REPEAT qualifier appears, only the first record needs to be given.

If OP mainkey is FILL, only A(1) matters so this can be a constant or
single variable. The value of A(1) is used to initialize the record(s).

For a single record, its length in items (according to TYPE).

For a record group, a positive Il is the total number of items to write. A
negative N implies that the length of individual records is the absolute
value of N.

If record(s) to be stored are to be viewed as rectangular matrices, set M
to the first matrix dimension. Otherwise, set M to zero.

This value may be later retrieved using GMGETz (§9.5) if so desire}ﬂ, but
has otherwise no bearing on the inner workings of GAL-DBM.

Only meaningful if OP mainkey is WRITE with no REPEAT qualifier and
RHNAME specifies a record group. In this case. IGAP is item gap in array A
between successive records.

In all other situations, IGAP is a dummy integer argument.

Only meaningful if OP mainkey is WRITE with UPDATE qualifier given:
begin updated-record writes I0FF items after record start.

In all other situations, IOFF is a dummy integer arguinent.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

The following examples illustrate the use of GMPUTH and GMPUTC for creating and updating the four
record groups already used in §9.5:

S J XYZ ABCD

S1 J1 Ty, Y. 2 aypbyoey,d
82 J2 T2,Y2,22 as. by cy.ds
S3 J3 T3,Yn, 23 as.bs ey, dy
84 Ja TasYq4.%4 ay.bycqdy
S5 Js T5,Ys5, 25 as,bs,c5.ds
S6 Js TG, Y6, 2, aa,bg, o dg

9-19

Section 9: NAMED RECORD OPERATIONS

Table 9.4 OP Argument (Mainkeys and Qualifiers) for GMPUTz

Mainkey Root Effect

FILL F Initialize records with A(1) as fill item.

RESERVE R As FILL, but do not initialize.

WRITE L} Write records from array A to library.

none _WRITE assumed - -
Qualifier Root Valid for Effect

mainkey

REPEAT R WRITE All records of a record group are identical.
UPDATE U WRITE Force update; skip if record(s) not found.
APPEND A WRITE Force append by deleting all existing records

that match record name

9--20

ORIGINAL PAGE IS
OF POOR QUALITY
§9.9 PUT NAMED RECORD(S): GMPUTz

The owner dataset is at sequence number 55 of library 7. §.1:6 contain 8-character records, J.1:6
contains 1-item integer records, XYZ.1:6 contains 3-item double-precision records, and ABCD.1:6
contains 4-item double-precision records. Each record of ABCD may be viewed as a 2 x 2 matrix:

a;, ¢
b, d,
should a matrix interpretation be requested.

EXAMPLE 9.15

Create J.1:6 and initialize it to zero.

CALL GMPUTN ('F’, 7, 656, *J.1:6 *, 'I', 0, 1, O, O, O, 1200)

EXAMPLE 9.16
Store JVAL = j; into J.2:

CALL GMPUTN ('W', 7, 55, *'J.2 *, 'I', JVAL, t, 0, 0, O, 1200)

EXAMPLE 9.17

Create XYZ.1:8 initialized to -1.0. and then store ra,ya, 23, which are held in double-precision
array XYZC(3).
DOUBLE PRECISION XYZC(3)

CALL GMPUTU ('F', 7, 55, 'XYZ.1:6 ', 'D', -1.0D0O, 3, 0, O, O, 1200)
CALL GMPUTN ('W', 7, 55, 'XYz.3 *, 'D’', XYzc, 3, 0, O, O, 1200)

EXAMPLE 9.18
Create ABCD.1:8, the entries of which happen to be in array A2D(2,2,6).

DOUBLE PRECISION A2D(2,2,6)

CALL GMPUTN (’'W', 7, 55, 'ABCD.1:6 ', 'D’, A2D, 4, 2, 0, 0, 1200)

Section 9: NAMED RECORD OPERATIONS

EXAMPLE 9.19
Create S.1:8, which is to consist of six identical 8-character records saying 'Nothing ’.

CALL GMPUTC ('W/R', 7, 55, 'S.1:6 ', 'A', 'lNothing ', 8, 0, O, 0, 1200)

EXAMPLE 9.20
Replace all six y; items in XYZ.1:6 (which is assumed to exist), by the second-row values of
double-precision array XYZ dimensioned 8 x 6.

DOUBLE PRECISION XYZ(8,6)

CALL GMPUTN ('W/U’, 7, 55, 'XYZ.1:6 ', 'D', X¥z(2,1), -1, 0, 5, 1, 1200)

9-22

10

Supplemental
Operations

Sectlon 10: SUPPLEMENTAL OPERATIONS

§10.1 GENERAL

This section describes “oddball” operations that do not fit neatly within the previous four
Sections. Examples: building datasets and record names, setting processor-mode flags,
controlling output volume, and so on.

Associated entry points are alphabetically ordered by the last four letters of the entry
point name. A summary entry point list is provided in Table 10.1.

Note that none of these entry points has a TRACE argument. Consequently, they fall
outside the scope of the NICE-DMS error handler (DMSERR, §14) and checks on correctness
of input arguments is minimal or nonexistent.

10--2

§10.1 GENERAL

Table 10.1 Entry Points for Supplemental Operations

Operation Entry Arguments See
Point ,
Set macroprocessor flag GMACRO MF §10.2
Break up dataset name GMBUDH DSNAME, KEY1, KEY2, IC1, IC2, IC3 §10.3
GMUXDN XHAME, MOK, MKC, KEY, ICYC, IREL,
ICOL, IRC, MAHNY, IBAD
Break up record name GMBURN RNAME, RKEY, LCYC, HCYC §10.4
4 GMUARN OP, RNAME, NKEYS, KEYS, MASK, NCYCS,
CYCS, COLONS, IRELC, RELCYC, IBAD
Construct dataset name GMCODH DSHAME, KEY1, KEY2, ICi1, IC2, IC3 §10.5
Construct record name GMCORH RIAME, KEY, IL, IH §10.6
GMCARH RHAME, KEYS, NK, LHX, NCYCS
Declare Page Buffer Pool GMPOOL PB, LP, HP §10.7
Enter processor signature GMSIGH PRNAME §10.8
Suppress open/close messages GMSOCM M §10.9

Sectlon 10: SUPPLEMENTAL OPERATIONS

§10.2 SET MACROPROCESSOR FLAG: GMACRO

GMACRO can be used to turn the “NICE macroprocessor” flag to a specific value. Setting
this flag to a nonzero value affects the outcome of conditional open-library (§6.4) and
close-library (§6.2) operations.

FORTRAN Reference

Calling sequence

[cALL GMACRO (MF) |

Input arguments

MF 0 : turns macroprocessor flag off.

1 : turns macroprocessor flag on. Library files tagged for condi-
tional close (§6.2) will not be closed.

2 : as 1, plus all library-open operations (§6.4) will be conditional.

REMARK 10.1

The default value of this flag, on processor start, is zero.

REMARK 10.2)
At the I/O Manager level (see ref. 2), this entry point is called DMACRO.

10-4

§10.3 BREAK UP DATASET NAME: GMBUDN/GMUXDN

§10.3 BREAK UP DATASET NAME: GMBUDN/GMUXDN

GMBUDN receives a dataset name, and proceeds to divide it up into its five components: two
character strings (mainkey and key extension) and three integers (cycles). This operation
is the inverse operation to GMCODN (§10.5). 9GMUXDN performs a detailed breakdown of an
external dataset name that may contain masking, cycle range. and relative cycle specifi-
cations. This entry point is too specialized for most applications. It is described here for

completeness.
FORTRAN GMBUDN Reference

Calling sequence

CALL GMBUDN (DSHNAME, KEY1, KEY2, ICi, IC2, IC3)

Input Arguments

DSNAME A character string that contains the dataset name left-justified
blank-filled. If the name is less than 40 characters long, it should
be terminated by a blank.

Output Arguments

KEY1, KEY2 Character strings that receive mainkey and key extension, respec-
tively, left-justified blank-filled. Each should be declared to be at
least 16 character long in the calling program.

I1C1, IC2, IC3 Integers that receive the three cycle numbers.

REMARK 10.3
Masking characters in the mainkey and key extension of DSNAME are permitted and will be correctly
stored in KEY1 and KEY2; see Example 10.1 below.

REMARK 10.4
Masking, cycle-range or relative-cycle specifications on cycle components will not be correctly
processed.

EXAMPLE 10.1
CHARACTER KEY1x16, KEY2+16

INITEGER I,J, K

CALL GMBUDN (’STAR.SHIP.3.8 ', KEY1, KEY2, I, J, K)

The outputs will be KEY1 = *STAR ', KEY2 = 'SHIP ', I = 3,]J = 8andK = 0.

10--5

Section 10: SUPPLEMENTAL OPERATIONS

EXAMPLE 10.2

CHARACTER KEY1%16, KEY2*16
INTEGER I, J,K

CALL GMBUDN (°'PROCx.*. ', KEY1, KEY2, I, J, K)
The outputs will be KEYt = 'PROC+ ' KEY2 = '+ ', I =J =K = 0.

FORTRAN GMUXDN Reference

Calling sequence

CALL GMUXDN (XNAME, MOK, MKC, KEY, ICYC, IREL, ICOL, IRC, MANY, IBAD)

Input Arguments

XNAME External dataset name.
MOK One-character string. M if masking and cycle-range specifications
are permitted, otherwise blank.

MKC Maximum characters retained in keys: 4 if DAL, otherwise 16.

Output Arguments

KEY (1) Mainkey left-justified blank-filled.
KEY(2) Key extension left-justified blank-filled.
ICYC A (3,2) integer array of unpacked cycle data:

ICYC(K,1) Lower bound for K-th cycle (K=1,2,3)
ICYC(K,2) Upper bound for K-th cycle (K=1,2,3)
IREL (3,2) integer array of relative-cycle specs:
IREL(K,1) Relative-cycle-spec for ICYC(K,1) O=none, 1=L (low-
est), 2=H (highest), 3=N (next).
IREL(K,2) likewise, for ICYC(K,2). Nonzero flags may appear only

for one K.

IRC Relative cycle indicator. If a relative cycle specification for the K-th
cycle is detected, IRC = K. Else IRC returns zero.

ICOL 3-integer array marking appearance of colons in cycle fields: ICOL (K)
is nonzero if colon appears in K-th cvcle spec, else 0.

MANY 1 if a masking or cycle-range specification appears, otherwise 0.

IBAD Zero if no errors detected. Otherwise IBAD is set to index of char-

acter at which parsing stopped.

10--6

§10.4 BREAK UP RECORD NAME: GMBURN/GMUARN

§10.4 BREAK UP RECORD NAME: GMBURN/GMUARN

GMBURN receives a record name, and proceeds to divide it into its three primitive compo-
nents: key, low cycle and high cycle. GMUARN is the most general record name unpacking
routine, as it handles the case of multiple keys and/or cycles connected through the am-
persand operator. For the single-key, single-cycle case, GMBURN should be used as it is more
efficient.

FORTRAN GMBURN Reference

Calling sequence

CALL GMBURN (RNAME, RKEY, LCYC, HCYC)

Input Argument

RNAME Record name.

Output Arguments

RKEY Character string to receive record key.
LCYC Integer to receive low cycle.
HCYC Integer to receive high cycle.

FORTRAN GMUARN Reference

Calling sequence

CALL GMUARN (OP, RNAME, NKEYS, KEYS, MASK, lCYCS,
CYCS, COLONS, IRELC, RELCYC, IBAD)

Input Arguments

oP Options letter string:
(1:1) A if “anded” keys permitted,
(2:2) M if masking permitted,

(3:3) H convert * in cycle spec to L:H.
RNAME Record name.
Output Arguments
NKEYS Number of keys stored in array KEYS.

KEYS Record key (if IKEYS="1) or key array (if HKEYS>>1). Keys must not
exceed 12 characters.

10-7

Section 10: SUPPLEMENTAL OPERATIONS

MASK MASK(I) is set to 1 if masking character (* or %) detected in the
I-th key (I=1,...NKEYS), otherwise 0.
NCYCS Number of cycle specs decoded into CYCS.
CcYCS A 3 by NCYCS integer array. Rows 1| and 2 get lower and upper
cycle, respectively, row 3 gets the increment.
COLONS COLONS(I) is the number of colons in cycle specifications (0, 1, or
2).
IRELC 1 if relative cycle specifications detected, otherwise 0.
RELCYC A 2 by lICYCS array of relative cycle specifications; same marking
scheme as used by GMUXDHN.
IBAD Index of illegal character if one such detected, otherwise 0.
|
|
J

10-8

§10.5 CONSTRUCT DATASET NAME: GMCODN

§10.5 CONSTRUCT DATASET NAME: GMCODN

GMCODN receives five components of a dataset name: two character strings (mainkey and key
extension) and three integers (cycles), and proceeds to pack them into a single character
string suitable for presentation to entry points that receive a dataset name argument.

FORTRAN Reference

Calling sequence

CALL GMCODN (DSNAME, KEY1, KEY2, IC1, IC2, IC3)

Input Arguments

KEY1, KEY2 Character strings containing mainkey and key extension, respec-
tively. If any of these is less than 16 characters long, the string
must be terminated by a blank.

IC1, IC2, IC3 The three cycle numbers (integers).
The only output is:

DSNAME A character string that receives the packed record name left-justified
blank-filled. Allocated length in calling program should be at least
40 characters for safety.

REMARK 10.5
Masking characters in the key-string arguments (KEY1 and KEY2) are permitted; see example below.

REMARK 10.6

Masking, cycle-range, or relative-cycle specifications on cycle components cannot be specified with
this routine.

EXAMPLE 10.3

CHARACTER DSHNAME+40

CALL GMcoDN (DSNAME, 'STAR ', °'SHIP ', 3, 8, 0)

The output name will be DSNAME = 'STAR.SHIP.3.8’, with right blank-fill.

EXAMPLE 10.4

CHARACTER DSNAME=40

CALL GMcODN (DSNAME, 'PROC* ', 'x= ', 0, O, 0)

The output name will he DSNAME = °'PROC*.*. . with right blank-fill.

10-9

Section 10: SUPPLEMENTAL OPERATIONS

§10.6 CONSTRUCT RECORD NAME: GMCORN/GMCARN

GMCORN receives components of a record name: a key, a low cycle and a high cycle, and
proceeds to pack them into a single character string suitable for presentation to GMGETz
or GMPUTz entry points discussed in §9. GMCARN is a more general version of GMCORN. It
receives a key array and an low/high/increment cycle array, and proceeds to pack all of
this information into a record name.

FORTRAN GMCORN Reference

Calling sequence

CALL GMCORN (RNAME, KEY, ILO, IHI)

Input Arguments
KEY Record key. KEY must not exceed 12 characters.

ILO, IHI Low and high record cycle, respectively.

If IHI does not exceed ILO, IHI is ignored, and will not appear in
RNAME.

If IHI = ILO = O, both cycles are dropped from RNAME.

The only output is:

RNAME A character string that receives the packed record name. Allocated
' length in calling program should not be less than 20 characters for
safety.

EXAMPLE 10.5

CHARACTER RNAME+20

CALL GMCORN (RNAME, 'SIG-XX ', 4, 0)
The output name will he RIIAME = *SIG-XX.4'. with right blank-fill.

FORTRAN GMCARN Reference

Calling sequence

CALL GMCARN (RNAME, KEYS, K, LHX, liCYCS)

Input Arguments

KEYS Record key (if HK=1) or key array (if IK>1). KEYS must not exceed
12 characters.

10--10

NK

LHX

NCYCS
Output Arguments

RNAME

EXAMPLE 10.6

§10.6 CONSTRUCT RECORD NAME: GMCORN/GMCARN

Number of keys supplied in array KEYS.
NHK = 1: ordinary record name.
NK > 1: namned record group.
NK = 0: blank key assumed (has special uses).

A 3 by NCYCS array of cycle bounds and increment cycle specifica-
tions. See GMUARN for details, §10.4.

Number of cycle specifications (may be 0).

A character string that returns the packed record name left-justified
blank-filled. Length should exceed 13*NK + 16*NCYCS characters for
safety.

CHARACTER RIIAME+38, RUIKEY(3)+12
INTEGER LOHI(3)

RNKEY (1)

= 'SIG-XX'
RNKEY(2) = 'SIG-YY’
RUKEY(3) = 'SIG-2Z°
LORI(1) = 7
LOHI(2) = 22
LOHI(3) =1

CALL GMCARN (RNAME, RUKEY, 3, LOHI, 1)

The output name with right blank-fill will be

RIUAME = ’SIG-XX&SIG-YY&SIG-ZZ.7:22°

10--11

Section 10: SUPPLEMENTAL OPERATIONS

§10.7 DECLARE PAGE BUFFER POOL: GMPOOL

Entry point GMPOOL declares a Page Buffer Pool (PBP) for subsequent use in paged 1/0
support. Refer to §2.3 and §4.6 of ref. 2 for details.

FORTRAN GMPOOL Reference

Calling sequence

CALL GMPOOL (PB, LP, HNP)

where all arguments are input:

PB

LP

NP

REMARK 10.7

An integer array dimensioned
LPxP + 2+UP + 2 words

which will be used by the I/O manager as workspace for Page Buffer
Pool (LP*NP words) and Page Buffer Table (2*NP words). Two
words are used to store protection data.

Page length in words. Must be an ezact multiple of the internal
PRU size (§2.2.4 of ref. 2) for optimal 1/O efficiency. Best results
are generally achieved when LP is 4 to 16 times the internal PRU
(see Appendix D of ref. 2.)

If LP < 0, the Page Buffer Pool (PBP) declaration is ignored, and
no diagnostics are given.

The number of pages in the buffer. As a very rough guide, NP should
be of the order of 10 times the number of paged I/O devices that
may be simultaneously active.

If NP < 0, the PBP declaration is ignored, and no diagnostics are
given.

GMPOOL must be called before any paged 1/0 device is opened. A good place to put the call is at
the start of the user program.

REMARK 10.8

Assuming that LP > 0 and NP > 0, GMPOOL performms the following actions: saves LP and liP,
computes and saves the blank-common address of PB (which. however, does not have to be in
blank common), clears the workspace, and stores protection keys.

REMARK 10.9

Once the PB array is specified using GMPOOL, the user program should never tamper with it. To
do so would simply invite disaster.

10-12

§10.7 DECLARE PAGE BUFFER POOL: GMPOOL

REMARK 10.10
At the I/O Manager level (ref. 2), this entry point is called DMPOOL.

10-13

Section 10: SUPPLEMENTAL OPERATIONS

§10.8 SET PROCESSOR SIGNATURE: GMSIGN

GMSIGN specifies the processor name that will be “signed” into all datasets created by
the user program. The presence of a unique signature is extremely important for high-
level operation of the NICE system, but less important for non-network systems that use

GAL-DBM.
FORTRAN Reference

Calling sequence

CALL GMSIGH (PRNAME)

where

PRNAME Character string containing the processor name. Up to eight char-
acters are permitted.

REMARK 10.11

For ordinary NICE processors, this entry point should be called once at the processor start. The
name will be stored into all datasets then created by the processor.

REMARK 10.12

For NICE macroprocessors, it is usually preferable to let each component processor sign the
dataset it creates. In such a case there may be several calls to GMSIGN.

REMARK 10.13

If GMSIGN is never called, the processor-name field in the Table of Contents is filled with question
marks.

EXAMPLE 10.7
Specify SKYPUL82 as processor naine:

CALL GMSIGH ('SKYPUL82')

10-14

§10.9 SUPPRESS OPEN/CLOSE MESSAGES: GMSOCM

§10.9 SUPPRESS OPEN/CLOSE MESSAGES: GMSOCM

Entry point GMSOCM may be used to suppress permanently or temporarily informative
messages printed by the I/O manager when opening and closing logical devices (§§6.2,
6.4).

Calling sequence

[cALL cMsocM () |

where M is the number of subsequent messages to be suppressed.

M IfM > 0, suppress the next M messages. For permanent suppression,
make M large, e.g., M = 10000.

If M = O, print is restored.

REMARK 10.14
At the I/O Manager level (ref. 2), this entry point is called DMSOCM.

10-15

11

Ta_ble
Information
Retrieval

Sectlon 11: TABLE INFORMATION RETRIEVAL

§11.1 GENERAL DESCRIPTION

The Global Data Manager GAL-DBM provides a set of entry points that return state
information maintained in its internal tables. Entry points that return an integer value
are referenced as integer functions of the form LMzzzz, where zzrzz is a mnemonic identifier.
Entry points that return character information or integer arrays are referenced as GMzzzz.

Table 11.1 lists, alphabetically ordered by the four letters of their name, entry points
which are described in §11.2 and following. Users should note that none of these functions
check for legal input arguments: the calling program is assumed to insure that. If invoked
with illegal arguments, such as an LLDI out of range, the returned result will be meaningless.

REMARK 11.1

Information retrieval functions pertaining to error-handling, such as LMERCD, are covered in Section
14.

11-2

§11.1 GENERAL DESCRIPTION

Table 11.1 Entry Points for Information-Retrieval

Operation Entry Arguments See
Point
Retrieve dataset creation date/time GMCDAT LDI, IDSH, IDT §11.2
Retrieve deleted dataset count LMDEDS LDI §11.3
Retrieve library format GMFORM LDI, FORM §11.4
Retrieve dataset record keys GMGERK OP, LDI, IDSN, MKEY, §11.5
RKEY, NKEY, TRACE

Retrieve LDI information GMLDI LDI, FORM §11.6
Retrieve active library devices GMLIBS LDILIB, K, M §11.7
Retrieve dataset lock code LMLOCK LDI, IDSH §11.8
Retrieve dataset name GMIAME LDI, IDSH, DSHNAM §11.9
Retrieve library name GMLIIAM LDI, EDH §11.10
Retrieve number of datasets LMNIODS LDI §11.11
Retrieve number of records LMHNORD LDI, IDSH §11.12
Retrieve number of record keys LMHORK LDI, IDSH §11.13
Retrieve dataset type code LMTYPE LDI, IDSH §11.14
Retrieve dataset update date/time GMUDAT LDI, IDSII, IDT §11.15

11-3

Section 11: TABLE INFORMATION RETRIEVAL

§11.2 RETRIEVE DATASET CREATION DATE & TIME: GMCDAT

Entry point GMCDAT returns the creation date and time (in integer format) of a positional
or nominal dataset.

FORTRAN Reference

Calling Sequence

CALL GMCDAT (LDI, IDSH, IDT)

Input Arguments

LDI Logical Device Index of library device.
IDSH Dataset sequence number.

Output Arguments

IDT where IDT is a two-word integer array:
IDT(1) Creation date in YYMMDD
IDT(2) Creation time in HHMMSS

If LDI does not point to a library device, or either argument is out
of range, the value returned is meaningless.

11-4

§11.3 RETRIEVE DELETED DATASET COUNT: LMDEDS

§11.3 RETRIEVE DELETED DATASET COUNT: LMDEDS

Function LMDEDS returns the number of deleted datasets present in a data library device.

FORTRAN Reference

Calling Sequence

Input Arguments
LDI
Funetion Return

LMDEDS

NDS = LMDEDS (LDI)

Logical Device Index of library device.

Number of deleted datasets in the library (may be zero).

If LDI does not point to a library device, or is out of range, the
value returned is meaningless.

11-5

Sectlon 11: TABLE INFORMATION RETRIEVAL

§11.4 RETRIEVE LIBRARY FORMAT: GMFORM

Entry point GMFORM returns a library format identifier given the Logical Device Index.

FORTRAN Reference

Calling Sequence

Input Arguments
LDI
Output Arguments

FORM

CALL GMFORM (LDI, FORM)

Logical Device Index of library device.

A character string (dimensioned at least CHARACTER*6). If LDI is
not connected to a library device, or is out of range, a blank value

is returned. If the input LDI is connected to a library, FORM returns
one of the library format keys listed below.

DALPRO DALPRO compatible
GAL8O Positional GAL
GALS82 Nominal GAL

11-6

§11.5 RETRIEVE RECORD KEYS: GMGERK

§11.5 RETRIEVE RECORD KEYS: GMGERK

GMGERK scans the Record Access Table of a nominal dataset and returns a list of all record

- keys presently in it.

FORTRAN Reference

Calling Sequence

CALL GMGERK (OP, LDI, IDSH, MKEY, RKEY, NKEY, TRACE)

Input Arguments
opP
LDI
IDSN
MKEY

TRACE

Output Arguments

RKEY

NKEY

Operation qualifier : presently ignored.

Logical Device Index of library device.

Dataset sequence number.

Maximum number of keys that can be returned.

Error traceback argument. Do not put a zero or a negative value
here; these values are reserved for internal use.

Character array containing an alphabetically sorted list of NKEY
record keys.

Number of keys returned (may be zero).

11-7

Section 11: TABLE INFORMATION RETRIEVAL

§11.6 RETRIEVE LDI INFORMATION: GMLDI

Entry point GMLDI is similar to GMFORM if the given Logical Device Index is connected to a
library. If not, it returns a 4-character error key.

FORTRAN Reference

Calling Sequence

CALL GMLDI (LDI, FORM)

Input Arguments

LDI Logical Device Index of library device.

Output Arguments

FORM A character string (dimensioned at least CHARACTER*6). If the input
LDI is connected to a library, FORM returns one of the library format
keys listed below. If the LDI is not connected to a library or is out
of range, a four character error key is returned.

DALPRO DALPRO compatible

GAL8O Positional GAL

GAL82 Nominal GAL

ILDI LDI out of range

INDI LDI inactive

NLDI LDI active, not connected to a library

11-8

§11.7 RETRIEVE LIBRARY DEVICES: GMLIBS

§11.7 RETRIEVE LIBRARY DEVICES: GMLIBS

FEntry point GMLIBS returns a count of active library devices and a list of their Logical

Device Indices. This entry-point replaces LMLIBS.

FORTRAN Reference

Calling Sequence

Input Arguments

M

Output Arguments

LDILIB

CALL GMLIBS (LDILIB, K, M)

The maximum number of libraries that can be active. Usually this
is the dimension of array LDILIB in the calling program.

A integer array of dimension M or greater. The Logical Device
Indices of the active libraries are stored in the first K array locations;
the remaining (M-K) entrics are set to zero. If no libraries are active
(K = 0), all Il locations are cleared.

Count of active library devices (may be zero).

11--9

Sectlon 11: TABLE INFORMATION RETRIEVAL

§11.8 RETRIEVE DATASET LOCK CODE: LMLOCK

Function LMLOCK returns returns the lock code for a datasct identified by sequence number.

FORTRAN Reference

Integer Function Reference

Input Arguments
LDI
IDSH
Function Return

LMLOCK

REMARK 11.2

LCODE = LMLOCK (LDI, IDSH)

Logical Device Index.

Dataset sequence number.

Returns the dataset lock code; see Table 3.2 for details.

If LDI is not a library device, or if either argument is out of range,
the value returned is meaningless.

Dataset locking is not fully implemented.

11-10

§11.9 RETRIEVE DATASET NAME: GMNAME

§11.9 RETRIEVE DATASET NAME: GMNAME

Entry point GMNAME returns the stored name of a dataset given the Logical Device Index
of its owner library and the dataset sequence number. It is preferable to use GMGENT as

documented in §7.

FORTRAN Reference

Calling Sequence

Input Arguments
LDI
IDSN

Output Arguments

DSNAM

CALL GMNAME (LDI, IDSH, DSNAM)

Logical Device Index of library device.

Dataset sequence number.

A character string that receives the dataset name left-justified
blank-fill. Passed length is assumed; consequently, the name may be
truncated if the string length in the calling program is insufficient
to receive the full dataset name.

11-11

Section 11: TABLE INFORMATION RETRIEVAL

§11.10 RETRIEVE LIBRARY NAME: GMLNAM

Entry point GMLNAM returns the external device name of a library file given the Logical
Device Index.

FORTRAN Reference

Calling Sequence

CALL GMLNAM (LDI, EDN)

Input Arguments
LDI Logical Device Index of library device.
Output Arguments

EDN A character string that receives the external device name left-
justified blank-fill. Passed length is assumed; consequently, the
name may be truncated if the string length in the calling program
is insufficient to receive the full device name.

11-12

§11.11 RETRIEVE NUMBER OF DATASETS: LMNODS

§11.11 RETRIEVE NUMBER OF DATASETS: LMNODS

Function LMNODS returns the number of datasets present in a library device. The count
includes deleted datasets.

FORTRAN Reference

Integer Function Reference

NDS = LMNODS (LDI)

Input Arguments

LDI Logical Device Index of library device.

Function Return

LMNODS Returns number of datasets in the library (may be zero).

If LDI does not point to a library device, or is out of range, the
value returned is meaningless.

11-13

Sectlon 11: TABLE INFORMATION RETRIEVAL

§11.12 RETRIEVE NUMBER OF DATASET RECORDS: LMNORD

Function LMNORD returns the number of records in a positional or nominal dataset. This
entry-point replaces LMRECS.

FORTRAN Reference

Integer Function Reference

NRECS = LMNORD (LDI, IDSH)

Input Arguments
LDI Logical Device Index of library device.
IDSN Dataset sequence number.

Function Return
LMNORD The number of records stored in the dataset.

For positional datasets, this count always ezcludes the descriptor
record.

For nominal datasets, the count includes both ordinary records and
record groups.

If LDI does not point to a library device, or if either argument is
out of range, the value returned is meaningless.

11-14

§11.13 RETRIEVE NUMBER OF RECORD KEYS: LMNORK

§11.13 RETRIEVE NUMBER OF RECORD KEYS: LMNORK

Function LMNORK returns the number of record keys in use for a given nominal dataset.

FORTRAN Reference

Integer Function Reference

Input Arguments
LDI
IDSHN

Function Return

LMNORK

HRK = LMNORK (LDI, IDSN)

Logical Device Index of library device.

Dataset sequence number.

Number of Record Access Packets in use.

If LDI is not a library device, or if either argument is out of range,
the value returned is meaningless.

11-15

Section 11: TABLE INFORMATION RETRIEVAL

§11.14 RETRIEVE DATASET TYPE CODE: LMTYPE

Function LMTYPE, referenced as an integer function, returns the data type code of a dataset
identified by Logical Device Index and sequence number. The data type is relevant to
DAL-conforming datasets only.

FORTRAN Reference

Integer Function Reference

Input Arguments
LDI
IDSN

Function Return

LMTYPE

ICODE = LMTYPE (LDI, IDSHN)

Logical Device Index.

Dataset sequence number.

Dataset type code.

If the LDI device is not a library, or if either argument is out of
range, the value returned is meaningless.

11-16

§11.15 RETRIEVE DATASET LAST-UPDATE DATE & TIME: GMUDAT

§11.15 RETRIEVE DATASET LAST-UPDATE DATE & TIME: GMUDAT

Entry point GMUDAT returns the last-update date and time (in integer format) of a nominal
dataset.

FORTRAN Reference

Calling Sequence

CALL GMUDAT (LDI, IDSH, IDT)

Input Arguments
LDI Logical Device Index of library device.
IDSHN Dataset sequence number.

Output Arguments

IDT where IDT is a two-word integer array:
IDT(1) Last-update date in YYMMDD
IDT(2) Last-update time in HHMMSS
If the LDI does not point to a library device, or if either argument

is out of range, or if the library is positional, the value returned is
meaningless.

REMARK 11.3
The date and time of last update is maintained in GALS82 libraries, but not in GAL80 or DAL

libraries.

11-17

12
Copy Operations

Section 12: COPY OPERATIONS

§12.1 GENERAL

Transfer operations involve copying datasets from one library to another and records from
one dataset to another. Entry points for copy operations are sumnarized in Table 12.1.

12-2

§12.1 GENERAL

Table 12.1. Entry Points for Copy Opecrations

Operation Entry Arguments See
Point

Copy by name GMCOPN LDIS, DSNAME, LDID, IACT, O, §12.2
TRACE

Copy nominal record GMCOPR OPL, LDIS, IDSNS, RNS, LDID, §12.3
IDSND, RND, TRACE

Copy by sequence GMCOPS LDIS, IDSNi, IDSH2, LDID, §12.4
IACT, O, TRACE

Copy indexed record GMCOPZ LDIS, IDSNS, IRECS, SIZR, OFFS, §12.5
LDID, IDSHD, IRECD, TRACE

Copy and rename dataset(s) GMCORD OPL, LDIS, DNAMS, IDSH, §12.6

LDID, DNAMD, TRACE

12-3

Section 12: COPY OPERATIONS

§12.2 COPY DATASETS BY NAME: GMCOPN

GMCOPN copies one or more datasets from one data library to another, or to the same
library. Datasets to be copied are identified by name. Copied datasets are appended to
those existing in the destination library. The operation may be qualified to apply to active
or deleted datasets only.

FORTRAN Reference
Calling sequence

CALL GMCOPN (LDIS, DSNAME, LDID, IACT, O, TRACE)

where all arguments are input:

LDIS Logical Device Index of source library.
DSNAME Name identifying dataset(s) to be copied. Often contains masking and
cycle-range specifications.
LDID Logical Device Index of destination library. LDID = LDIS is permitted.
IACT Dataset activity qualifier:
1 Copy active datasets only.

-1 Copy deleted datasets only.

0 Copy both active and deleted datasets.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 12.1

The fifth argument is presently inactive.

REMARK 12.2

Datasets are copied on a record-by-record basis.

REMARK 12.3

If deleted datasets are copied, they will be marked as deleted in the destination library.

REMARK 12.4

If the destination library contains datasets with names matching those of copied elements, the
original datasets are marked as deleted.

REMARK 12.5

Copying indexed-record datasets from GAL to DAL may result in loss of information. The loss
may include one or more of the following: long dataset keys, GAL-only TOC fields, descriptor
record.

12-4

.-

§12.2 COPY DATASETS BY NAME: GMCOPN

REMARK 12.6
Named-record datasets can only be copied from a GALS82 file to another. If the destination library
is not GAL82, an error will result.

§12.1.2. GMCOPN Usage Examples

EXAMPLE 12.1
Copy all active datasets of library 3 to library 7:

CALL GMCOPN (3, "+.¥ ', 7, 1, O, 2500)

EXAMPLE 12.2
Copy all active and deleted datasets of library 3 whose key extension is FORCE to library 7:

CALL GMCOPN (3, 'x.FORCE.* ', 7, 0, 0, 2600)

12-5

Section 12: COPY OPERATIONS

§12.3 COPY NOMINAL RECORDS: GMCOPR

GMCOPR copies a nominal record or record group from a source dataset to an existing
destination dataset. The destination record may be renamed. Datasets may be in the
same library or on different libraries.

FORTRAN Reference

Calling sequence

CALL GMCOPR (OPL, LDIS, IDSNS, RNS, LDID, IDSHD, RND, TRACE)

where all arguments are input:

OPL

LDIS

IDSNS

RNS

LDID

IDSND

RUD

TRACE

Option letter string. Presently: K copy by key. W give warning message
if no records found.

Logical Device Index of source library.
Sequence number of source dataset.

Name of source record or record group.
Logical Device Index of destination library.
Sequence number of destination dataset.
Name of destination record or record group.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

12-6

§12.4 COPY DATASETS BY SEQUENCE: GMCOPS

§12.4 COPY DATASETS BY SEQUENCE: GMCOPS

GMCOPS copies one or more datasets from one data library to another, or to the same library.
Datasets to be copied are identified by sequence range. Copied datasets are appended to
those existing in the destination library. The operation may be qualified to apply to active
or deleted datasets only.

FORTRAN Reference
Calling sequence

CALL GMcoOPS (LDIS, IDSN1, IDSNH2, LDID, IACT, O, TRACE)

where all arguments are input:

LDIS Logical Device Index of source library.

IDSH1 " Sequence number of first dataset to be copied. If zero, IDSN1 = 1 is
assumed.

IDSN2 Sequence number of last dataset to be copied. If zero, IDSN2 = IDSN1 is

assumed. If IDSH2 exceeds the number of datasets in the source library,
the copy process stops at the last dataset.

LDID Logical Device Index of destination library. LDID = LDIS is permitted.
IACT Dataset activity qualifier:
1 Copy active datasets only.

-1 Copy deleted datasets only.
0 Copy both active and deleted datasets.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

REMARK 12.7

The sixth argument is presently inactive.

REMARK 12.8

Datasets are copied on a record-by-record basis.

REMARK 12.9
If deleted datasets are copied, they will be marked as deleted in the destination library.

REMARK 12.10

If the destination library contains datasets with names matching those of copied elements, the
original datasets are marked as deleted.

12-7

Section 12: COPY OPERATIONS

REMARK 12.11

Copying indexed-record datasets from GAL to DAL may result in loss of information. The loss
may include one or more of the following: long dataset keys, GAL-only TOC ficlds, descriptor
record.

REMARK 12.12

Named-record datasets can only be copied from a GALS82 file to another. If the destination library
is not GAL82, an error will result.

EXAMPLE 12.3
Copy dataset 14 of library 3 to library 7:

CALL GMCOPS (3, 14, 0, 7, 0, 0, 2500)

EXAMPLE 12.4

Copy all active datasets in sequence range 10 through 42 (inclusive) of library 4 to library 7:

CALL GMCOPS (3, 10, 42, 7, 1, 0, 2700)

12--8

§12.5 COPY INDEXED RECORDS: GMCOPZ

§12.5 COPY INDEXED RECORDS: GMCOPZ

GMCOPZ copies an existing positional dataset record to another existing dataset. Source
and destination datasets may be in different libraries. The record may be appended to the
destination dataset, or overwrite an existing record. Record length and offset specifications

may be given.

FORTRAN Reference

Calling sequence

CALL GMCOPZ (LDIS, IDSNS, IRECS, SIZR, OFFS, LDID, IDSHD, IRECD, TRACE)

where all arguments are input:

LDIS

IDSNS

IRECS

SIZR

OFFS

LDID

IDSHD

IRECD

TRACE

Logical Device Index of source library.
Sequence numnber of source dataset.

Source record index.

If nonzero, size of record to be transmitted. If zero, the TOC size minus
offset will be used.

Destination record offset in words.

Logical Device Index of destination library.

Sequence number of destination dataset.

If > 0, index of destination record to be replaced. If -1, append record.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

129

Section 12:

COPY OPERATIONS

§12.6 COPY AND RENAME DATASET(S): GMCORD

GMCORD copies from a library to another datasets that match a given name, or a single

dataset at

a given sequence. source and destination library may coalesce. The copied

datasets may have different names. An input option permits restricting the copy operation
to active datasets, deleted datasets, or both. Generally invoked with wild-card keys or

characters in the name.

FORTRAN Reference

Calling sequence

where all arguments are input:

OPL

LDIS

DNAMS

IDSH

LDID

DNAMD

TRACE

Options letter string.
A = only active datasets will be copied
D = only deleted datasets will be copied

* * = all datasets will be copied
Logical Device Index of source library.

If non-blank, name identifying dataset(s) to be copied. Often contains
masking and cycle-range specifications.

If DNAMS is blank, sequence number of source dataset.
Logical Device Index of destination library. LDID = LDIS is permitted.

If nonblank, specifies name of destination dataset(s). Usually has mask-
ing specs.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for

internal use.

12-10

13

Text Group
Operations

Section 13: TEXT GROUP OPERATIONS

§13.1 GENERAL

A text group is a record group of card images. More precisely, cach record of a text group
is a character string.

This Section presents entry points that operate on text groups and on the old-fashioned
positional text datasets. A summary entry point list is provided in Table 13.1.

13--2

§13.1 GENERAL

Table 13.1. Entry Points for Text Group Operations

Operation Entry Arguments See
Point

Get Text Group GMXGET OP, LDI, IDSN, RKEY, LUNIT, NX, TRACE §13.2

Put Text Group GMXPUT OP, LDI, IDSH, RKEY, LUNIT, RL, TRACE §13.3

13-3

Sectlon 13: TEXT GROUP OPERATIONS

§13.2 GET TEXT GROUP: GMXGET

GMXGET copies a text dataset or text group to a card-image FORTRAN-readable, text-
editable symbolic data file.

FORTRAN Reference

Calling sequence

CALL GMXGET (OP, LDI, IDSIi, RKEY, LUNIT, NX, TRACE)

where all arguments are input:

0P

LDI
IDSN

RKEY

LUNIT

nX

TRACE

Options letter string. Presently:
H = write heading
V = use reverse video if LUNIT = O

W = print warning if nothing found
Logical Device Index of source library.
Sequence of dataset in which Text Group or Dataset resides.

If library is GAL82, name of Text Group to be copied, otherwise a
dummy blank argument.

Logical unit number of destination FORTRAN file. If LUNIT>O0, must be
open at time GMXGET is called. If LUNIT=0, system print file is assumed.
GMXGET does not close (or endfile) this file.

If 1, insert blank carriage control (1X) when on LUNIT>0. Ignore if
LUNIT=0 or NX=0.

A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

13-4

§13.3 PUT TEXT GROUP: GMXPUT

§13.3 PUT TEXT GROUP: GMXPUT

GMXPUT copies a card-image, FORTRAN-readable data file into a data library, where it
becomes a text dataset (if library is positional 1r.e., DAL or GAL80) or a text group {if
library is nominal - i.e., GAL82). The file is copied until an end-of-file (EOF) is found.

FORTRAN Reference

Calling sequence

CALL GMXPUT (OP, LDI, IDSH, RKEY, LUNIT, RL, TRACE)

Input Arguments

oP Operation option letters. Presently,
F Make fixed-length-image text dataset (type 6)
Z First text group cycle will be zero if it is a one-line statement.

LDI Logical Device Index of source library.

IDSN Sequence number of dataset that will contain the text group. Must exist
at the time GMXPUT is called.

RKEY If library is GAL82, name of text group to be created, otherwise a
dummy BLANK argument.

LUNIT Logical unit number of source FORTRAN file. Must be open at time
GMXPUT is called. GMXPUT does not close this file.

RL Applies to Type-6 text dataset or text group only. If RL>0 make stored

record length equal to RL characters (usually 80).

If RL=0, prescan LUNIIT image lengths and adopt minimum covering
word-aligned character count. This process usually saves disk storage,

but takes longer to process.

TRACE A positive integer used as identifying label in error traceback prints.
Do not use a zero or negative value here; these values are reserved for
internal use.

13-5

14

Error
Handling

Section 14: ERROR HANDLING

§14.1 GENERAL INFORMATION

Any GAL-DBM operation invoked through an entry point that contains a TRACE argument
may be aborted or only partially executed on account of error conditions detected within
GAL-DBM proper, by the I/O Manager DMGASP, or by the operating system.

This section covers error processing, explains error messages, and describes entry
points that NICE programmers may use to store and retrieve error-related information,
and to modify default error handling. These entry points are listed in Table 14.1.

REMARK 14.1

The term error, used in the present context, means lack of success in performing an action. A
more accurate word would be failure. However, we shall conform here to the commonly-used term,
error, because that usage is universally accepted and because failure has an extreme connotation.

Computer systems and baseball players commit errors.

REMARK 14.2

Much of this Section’s material parallels that of §6 in ref. 2. This similarity is not accidental,
as GAL-DBM and the I/O Manager DMGASP share the same error-handling facilities. The
duplication is made in the interest of saving readers the trouble of going back and forth between

two manuals.

14--2

“\

§14.1 GENERAL INFORMATION

Table 14.1 Error-Handling Entry Points

Operation Entry Arguments See
Point -

Identify user subprogram GMUSER SUBNAM 514.4

Test error condition LMERCD IERR §14.5

Extract error information GMEINF OPL, IERR, EMSG, K §14.6

Retrieve I/O status LMIOST J §14.7
Defuse fatal errors GMEASY KERR §14.8
Specify error terminator GMETER UPGERR §14.9

14-3

Section 14: ERROR HANDLING

§14.2 ERROR PROCESSING OVERVIEW
Error Classification

The Global Database Manager GAL-DBM finds out about error conditions in three ways:

1. A validity check within GAL-DBM fails.
2. A validity check within the I/O Manager DMGASP fails.

3. An error indication is received from the I/O component of the operating system.

Regardless of source, GAL-DBM (or DMGASP) calls the central error management sub-
routine DMSERR, which serves the whole of NICE-DMS. DMSERR first logs a short message
on the error print file (normally unit 6). These error messages are listed and explained in
§14.2.

Next, errors are classified into three types:

1. Warning-only. Control returns to the calling program, and execution continues. The
user program may, at this point, interrogaie as to the error condition, and take ap-
propriate action.

2. Fatal. Program execution is terminated after more detailed printout. If the user pro-
gram has specified an error-termination routine, DMSERR calls it. (Error termination
routines are useful for cleanup operations such as buffer-flushing and file closing.)

3. Catastrophic. The run is aborted immediately. Even if an error-termination routine
has been specified, it is not called.

Catastrophic errors are those that may reflect serious problems in the user program logic.
For example: destruction of internal tables caused by array overspill. For obvious reasons,
this error type is not controllable by the user program or affected by the run environment.

Classification of non-catastrophic errors into fatal and warning-only depends on three
factors: the run environment, user-program specifications, and operation context. If the
user program has specified nothing, the IOM uses run environment and operation context
as classification criteria:

Interactive Run. A non-catastrophic error is treated as warning-only, unless a total error
count maintained by DMSERR exceeds an internally set limit (usually 50). If the error count
limit is exceeded, a fatal error exit is taken.

Batch Run. A non-catastrophic error is treated as fatal for most operations. Exception to
this rule involves errors detected by print routines (e.g., “list TOC"), as these are generally
harmless.

How does NICE-DMS know about the run environment? On first entry, it queries the
operating system for such information, and saves the answer in its internal tables.

14-4

§14.2 ERROR PROCESSING OVERVIEW

The preceding “default” treatment can be modified, within certain limits, by the user
program through entry points GMEASY (§14.8) and GMETER (§14.9).

14-

(1]

Section 14: ERROR HANDLING

Error Terminology

Applications programmers making use of NICE-DMS should he aware of the following
terminology, which is used in subsequent sections.

Error code An integer value which is set to a nonzero value when an error
condition occurs.

Error key A four-letter character string that uniquely specifies the error type.
Error message The diagnostic text placed by DMSERR on the error print file.

Error trace stack The ETS is a data structure optionally maintained by NICE-DMS,
and which records the tree of internal calls. (The presence or ab-
sence of ETS depends on parametrization of the GAL-DBM and
DMGASP Master-Source-Code preprocessing prior to compilation.)

I/O status An integer value, or set of integer values, returned by the operating
system to identify errors detected in an 1/0 transaction. The 1/0
Manager saves this value (or values) in an internal array.

14-6

§14.3 ERROR DIAGNOSTICS

§14.3 ERROR DIAGNOSTICS
Error Message Format
Error messages issued by DMSERR are of the form
DM Subnam: EKEY, diagnostic text

where Subnan is the name of the subroutine that calls DMSERR (often the same subroutine
that detected the error), EKEY is a four-letter error key, and “diagnostic text” is a short
explanatory message. This message may be followed by one or two additional lines that

furnish additional details such as the I/O status value.

Note the disappearance of error code numbers from the message. In the present NICE-
DMS, error codes have less importance than in previous versions.

List of Error Messages

All possible DMSERR error messages are listed below in key-alphabetical order. Those
labeled as “IOM level errors” are native to DMGASP and included here for the reader’s

convenience,

In the following messages, items in italics denote variable names or numbers that are
printed as part of the error message.

CFDS, Cannot find dataset

An operation was specified on an individual datasct, which was not found in the library.
This error cannot happen with operations such as “Find dataset” or “Match dataset”,
which explicitly return an absence indicator. For most situations, this error is viewed as a

warning-only error.

CRTB, Character record too big

A character record to be read or written through GMOVEC, GMPORC or GMPOWC,
exceeds the size of GAL-DBM buffers that take care of byte addressing.

DCLE, Device close error, file: File name

IOM level error. The operating system has reported an error during a device-close op-
eration. This error is a very unusual condition. Track the [/O status code for further

details.
DCOE, Device connect error, file: File name

IOM level error. This error can only occur for VAX 'VMS Block 170 devices and is very
unusual. The RMS level has reported an error condition when trying to carry out a
file-connect service. Track the I/O status code into the RMS Manual for further insight.

14--7

Section 14: ERROR HANDLING

DEXE, Device extend error, file: File name

Not presently active; reserved for future implementations.

DINE, Device inquire error, file: File name

IOM level error. A device-existence query performed through a FORTRAN INQUIRE
statement caused an error return. Not a common one.

DIRO, Device is read-only

IOM level error. A write-record operation was attempted on a device opened in read-only
mode. The operation is ignored.

DNCL, Device not connected to library

The Logical Device Index (LDI) specified in the call to an GAL- DBM entry point is active,
but is not connected to a library device.

DNDA, Device is not direct access

The device type index (TYPEX) in a GMOPEN call is negative. Negative TYPEX values
are used to request sequential-access devices and are therefore illegal for holding data
libraries.

DNWA, Device is not word addressable

The external PRU size parameter (XPRU) in a GMOPEN call to open a GAL device was
greater than 1. GAL devices must be word-addressable, so the only valid XPRU are 1, 0
or -1 (read §5.3.1 for details).

DOPE, Device open error, file: File name

IOM level error. A device-open operation failed. This is a common error, especially in
interactive work. If declaring an existing (OLD) file, the most likely causes are:

1. [Illegal file name.

2. File does not exist.

3. File is write-locked by the user program, or another program.

4. Access permission denied by file owner.

If file is created by the open operation (NEW or SCRATCH):

1. Illegal file name.

2. On some operating systems such as CDC’s NOS: file name duplicates that of an
existing catalogued file.

3. On VAX: file creation was attempted on a directory that denies write permission.

If the error cause is not evident, look up the status code printed on the next line in the
appropriate system manual.

14-8

§14.3 ERROR DIAGNOSTICS

DOVF, Device overflow

IOM level error. An write-record operation would have exceeded the device capacity limit.
The operation is aborted.

DQEX, Disk quota exceeded

IOM level error. A write-record operation is aborted by the operating system as the disk
quota would be exceeded (VAX).

DSCX, Dataset capacity exceeded

Installation of a new dataset would overflow the TOC capacity (approximately 1800
datasets). As this limit is more than enough for practical applications, this error is likely to
be caused by an infinite dataset-creation loop in the user program. Thus, it is considered
a catastrophic error.

DSNT, Dataset is not text

A get-text operation using GMGETX names a dataset which is in the library, but is not
a text dataset.

DTNA, Device type not available

A device type is not available on the IOM version being used.

DTNC, Device type not creation’s

A library device resident on a disk file was created with one TYPEX and reopened with
another. For example: creation TYPEX = 3 (FORTRAN [/0) and reopened with TYPEX
= 0 (Block I/O). This error will be reported only if GAL-DBM was able to read the library
header record (in which the creation’s TYPEX is stored) despite the TYPEX mixup. For
certain combinations, however, an error will occur at the operating systern or FORTRAN
Run-Time Library level; in such a case the I/O Manager will report it as DOPE, Device
open error. For example, on the VAX or Univac a FORTRAN file can be read with Block
I/0O, but the converse is not true.

FACD, File already connected to other LDI

A device opened with OLD status is already active on another LLDL The device-open is
aborted. Declaring on the same LDI is permitted. however. as the previous device is
automatically closed. Declaring NEW or SCRATCH is also permitted on computers like
the VAX, as the system simply increments the file cycle or version number.

FNGD, File not GAL or DAL

GMOPEN has been directed to open an existing file, but the file is not a library. This is
noted from a header prescan. The file is closed, and the L.LDI remains inactive.

14-9

Section 14: ERROR HANDLING

ILDP, Illegal device position

IOM level error. The result of a positioning operation via DMPOST or DMPAST would
result in the new device position being either negative or over the device capacity limit.
The new position is not stored.

ILDI, Illegal LDI

1/0 Manager or GAL-DBM level error. A Logical Device Index (LDI) is outside the legal
range 1 through 16. A very common error in interactive work.

ILDS, Illegal dataset name Dsname

A dataset name does not comply with the rules stated in §2.

ILO1, Illegal OPTX index

IOM level error. The device-assignment options index (OPTX) supplied to either DMOPEN
or DMDAST is outside the legal range -6 to +14. The device-open operation is aborted.

ILOP, Illegal operation

An illegal operation key was supplied in the calling sequence of Subnam.

ILRS, Illegal record size

IOM level error. The size of a record presented to a record-transfer entry point is zero or
negative.

ILSN, Illegal sequence number
The sequence number supplied to GAL-DBM is out of bounds.

ILTI, Illegal type index

IOM level error. The device type index (TYPEX) presented to DMOPEN or DMDAST is
outside the legal range -4 to +5.

ILXP, Illegal external PRU

IOM level error. An external PRU size presented to DNOPEN or DMDAST does not
exactly divide the internal PRU size (e.g., internal PRU 128 words, external PRU 24
words). This can never happen if the word-addressable default is used, which is the
recommended setting.

INDI, Inactive LDI

IOM level error. An 1/0 operation is attempted on a device that has not been previously

opened.

14- 10

§14.3 ERROR DIAGNOSTICS

LDTD, Logical Device Table destroyed

IOM level error. A protection key stored in front of the auxiliary storage tables has been
destroyed. This is considered a catastrophic error.

LDTF, Logical Device Table full

IOM level error. Open-device request refused because all 16 slots in the Logical Device
Table are in use.

MIRE, Miscellaneous read error

MIWE, Miscellaneous write error

IOM level errors. These are “catch-all” errors for data-transfer situations that cannot
be easily categorized. Typically the following happens. The 1/O Manager instructs the
operating system or FORTRAN Runtime Library to move a particular record, and back
comes the reply: that it cannot be done. There may be many reasons behind the refusal,
ranging from hardware malfunction to poor software. If the cause is not immediately
apparent, and usually is not, the recommended path is to write down the 1/0 status code
printed on the next line on a piece of paper, and proceed to consult the appropriate system
manual.

MROL, Modification of read-only library ignored

An operation that would have modified the contents of a library attached in read-only
mode has been attempted and caught at the GAL-DBM level. For example, marking a
dataset as deleted. The operation is ignored.

NRFD, No room for descriptor

An attempt was made to install or modify a descriptor record in an indexed-record dataset,
but there is no space to do so. The operation is skipped.

ODDS, Operation on deleted dataset

An operation was specified on a sequence number that corresponds to a deleted dataset.
This is an error only when a specific sequence number is prescribed, for example: find
record 5 of dataset 124, It does not apply to sequence range operations (e.g., list datasets
30 to 55), in which deleted datasets are automatically ignored.

PBPD, Page Buffer Pool destroyed

IOM level error. A protection key stored in front of the Page Buffer Pool has been altered.
This is considered a catastrophic error.

RBEI, Read beyond end of information

IOM level error. A read operation through DMREAD or DMRAST specifies a record that
extends beyond the end of information (NEXT). The operation is ignored.

14-11

Section 14: ERROR HANDLING

RBTS, Record buffer too small
The size of the GAL-DBM utility buffer is insufficient to do certain high-level operations.

RODS, Read outside dataset Dsname

A read-record operation would fall partially or completely outside the boundaries of the
active dataset. Faulty positioning or incorrect record size is usually to blame. The read
operation is skipped. A very common error.

SONA, Sequential operation not available

IOM level error. An operation other than open or close has been specified on a sequential-
access device, t.e., one opened with a negative TYPEX.

TMOL, Too many open libraries

The number of simultaneously active library devices exceeds an internal parameter (nor-
mally 8). The open request is ignored.

WODS, Write outside dataset Dsname

Same as RODS, but now it applies to a write-record operation. Commonly caused by
trying to append data to a “closed” dataset.

14-12

§14.4 IDENTIFY USER SUBPROGRAM: GMUSER

§14.4 IDENTIFY USER SUBPROGRAM: GMUSER

The first executable statement of any user-program subroutine that calls a GAL-DBM
entry point should be a call to GMUSER.

FORTRAN Reference

Calling sequence

CALL GMUSER (SUBNAM) |

where

SUBNAM A character string of up to eight characters that identifies the user-
program subroutine (normally the subroutine name).

REMARK 14.3
This name will appear at the “base” of ETS (Error Trace Stack) printouts.

REMARK 14.4

At the 1/O Manager level, this entry point is known as DMUSER (§6.3 of ref. 2), which has
identical effect and the same calling sequence.

REMARK 14.5
Before any call to GMUSER (or DMUSER) is made, NICE-DMS assumes USRPRG as ETS-base identifier.

EXAMPLE 14.1

SUBROUTINE OPENDL (LDI, FILNAM, ...)
CALL GMUSER ('OPENDL')
CALL GMOPEN (LDI, FILUAM, ...)

RETURN
END

14--13

Sectlon 14: ERROR HANDLING

§14.5 TEST ERROR CONDITION: LMERCD

Entry point LMERCD, referenced as an integer function, furnishes the means of testing for
error conditions after a error-sensitive reference to the 1/O Manager.

FORTRAN Reference

Function reference

IERR = LMERCD (IERR)

If an error condition has been detected in the previous IOM operation, a nonzero value is
returned as both argument and function value. The double setting facilitates the use of
LMERCD in conditional branching statements such as

IF (LMERCD(KODE) .NE. 0) CALL ERROR (KODE)

REMARK 14.6

There is no longer any significant correlation between the error code and a specific error type. On
the contrary, the relation will frequently vary as new error conditions are introduced in NICE-
DMS, because these are internally sorted (by an ad-hoc table-building program) alphabetically
on the error key. The error code serves only two purposes: indicates the presence of error by
a nonzero value; and works as a “hook” for retrieving error keys and messages through GMEINF

(§14.6).

14--14

§14.6 EXTRACT ERROR INFORMATION: GMEINF

§14.6 EXTRACT ERROR INFORMATION: GMEINT

Entry point GMEINF is used to extract the crror key and crror message, given the error
code.

FORTRAN Reference

Calling sequence

CALL GMEINF (OPL, IERR, EMSG, K)

where the input arguments are:

OPL Operation letter. Currently M to return error message in EMSG.

IERR Error code returned by LMERCD.

and the outputs are:

EMSG A character string that receives the error key in its first 4 locations,
followed by a comma and a diagnostic message. The total length of the
text string is returned in K. If IERR is zcro or is not a proper error code,
ESMG is blanked and K set to zero.

K The length of the message returned in EMSG. If the passed length of EMSG
' is insufficient to hold the whole message, it is truncated to that value,
and K set to LEN(EMSG).

REMARK 14.7

In most cases the user program will be interested only in retrieving and testing the error key. The
following illustrates a typical construction that tests for a device-open error.

CHARACTER*4 KEY

CALL GMOPEN (LDI, EDNAME, DDPARS, LBTYP, 2000)
IF (LMERCD(IERR) .NE. 0) THEN

CALL GMEINF ('M',IERR, KEY, K)

IF (KEY .EQ. 'DOPE’) THEN

END IF
END IF

14-15

Section 14: ERROR HANDLING

§14.7 RETRIEVE 1/0 STATUS CODE: LMIOST

Entry point LMIOST, referenced as an integer function, returns a 1/0 status code in effect
since the last 1/O operation.

FORTRAN Reference

Function reference

ICODE = LMIOST (J)

where
J Index to the I/O status array maintained by the I/O manager. Normally
J =1
LMIOST J-th entry of the I/O status array.

REMARK 14.8

These values are not only machine-dependent, but depend on whether FORTRAN I/O or Block
I/O was used. In the case of FORTRAN 1/0, the FORTRAN 77 standard (see ref. 7) describes
a few details about I/O status codes.

14-16

§14.8 DEFUSE FATAL ERRORS: GMEASY

§14.8 DEFUSE FATAL ERRORS: GMEASY

Entry point GMEASY (named after “take it easy”) may be used to specify that the following
fatal errors are to be treated as warning-only.

FORTRAN Reference

Calling sequence

CALL GMEASY (KERR)

where

KERR If KERR > O, treat next KERR fatal errors as warning only.
If KERR is zero, the standard error treatment of fatal errors is enforced.

If KERR < O, treat next |KERR| fatal errors as warning-only and suppress all
diagnostic messages. For experienced programmers only.

REMARK 14.9
Each entry to DMSERR counts as one error for the purposes of decrementing KERR.

REMARK 14.10

This entry point is primarily useful for batch runs.

REMARK 14.11

The treatment of catastrophic error conditions is not affected.

REMARK 14.12
At the I/O manager level, this is called DMEASY.

14-17

Section 14: ERROR HANDLING

§14.9 SPECIFY ERROR TERMINATOR: GMETER

Entry point GMETER may be called to specify an error termination routine to be called in
the event of a fatal error termination.

FORTRAN Reference

Calling sequence

CALL GMETER (UPGERR)

where UPGERR is the name of the error termination routine. This name must be declared
EXTERNAL in the subprogram that calls UPGERR.

In the event of a fatal error condition, DMSERR calls DMFATE, which checks whether an
error-termination routine has been specified via GMETER. If so, it issues the equivalent of
the calls

CALL UPGERR ('NICE-DMS', EKEY)

where EKEY is the error key.

REMARK 14.13

UPGERR must not execute a RETURN. It will be futile, anyway, as the next statement in DMFATE
is a call to unconditionally abort the run.

REMARK 14,14
UPGERR should not call DMSERR or DMFATE.

REMARK 14.15
At the I/O manager level, this entry point is called DMETER.

14-18

15—

15
References

Section 15: REFERENCES

1.

Felippa, C. A.: Architecture of a Distributed Analysis Network for Computational
Mechanics. Computers and Structures, vol. 13, 1981, pp. 405-413.

Felippa, C. A.: The Computational Structural Mechanics Testbed Architecture: Vol-
ume V - The Input-Output Manager DMGASP, NASA CR-178388, 1989.

Felippa, C. A.: Database Management in Scientific Computing, II: Data Structures
and Program Architecture. Computers and Structures, vol. 12, 1980, pp. 131-145.

Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:
Volume I - The Language. NASA CR-178384, 1988.

Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:
Volume II - Directives. NASA CR-178385, 1989.

Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:
Volume III - The Interface. NASA CR-178386, 1988,

Loden, W. A.: The NIFTY Standard: Volume Il - Dataset Templates. Report No.
LMSC-D059188, Lockheed Missiles and Space Company, Sunnyvale, CA, June 1982.

Programming Language FORTRAN, ANSI X3.9-1978. New York: American National
Standards Institute.

APPENDIX A
GLOSSARY

Appendix A: GLOSSARY

The following quick-reference list collects terms and acronyms that often appear in the

present document.

Access method

Active dataset

Addressing

Auztliary storage

Block

Block 1/0

Catalogued file

Closing (a device)

Core device

Current device locatton

Data

Database

Database manager (DBM)

The set of procedures for accessing and transferring data
structures from a residence medium to another. In the
literature, the term is often used in relation to stored data-
bases.

The dataset specified in the last reference to a record-level
operation.

The procedure by which a storage address at which a sub-
sequent activity is to take place is specified.

Storage facilities of lower cost and slower access than main
storage; generally connected to the central processor by
data channels.

A generic term that denotes a string of storage objects such
as characters, words, PRUs, etc., which are considered as
a storage unit for some purpose.

An Input-Output process that involves direct (unbuffered)
transfers of blocks of data between main storage and a disk
volume. Available from many operating systems through
special service entry points.

Sperry terminology for permanent files whose names are
maintained by the system on a Master File Directory.

See device closing.

A word-addressable, scratch device that resides on blank-
common storage.

A storage address maintained by the 1/0 Manager for each
active logical device, and which identifies the location at
which the next read or write operation is to take place.

Information recorded on a storage device.

An organized collection of operational data needed for the
completion of an activity. The term is usually reserved for
activities at the task or project level.

A data management system that interfaces a database
with its user environment.

A-2

Data library

Data management system
Data manager
Dataset

Dataset block

Dataset descriptor

Dataset record

Data space

Data structure

Descriptor
Device

Device closing

Device declaration

Device opening

§14.9 SPECIFY ERROR TERMINATOR: GMETER

A named partition of a database.

A software module that centralizes activities pertaining to
the manipulation of a class of data structures.

The decision-making component of a data management
system.

A record, or set of records, that is a named element of a
data library.

In a DAL-file organization, a block of machine words trans-
mitted to and from a dataset through Block I/O requests.
A DAlL-dataset block may contain one or more logical
records. The distinction between blocks and records is
important in DAL files because of the presence of inter-
record “gaps”.

In GAL-file organizations, which are word-addressable,
the distinction between blocks and records disappear.

An optional character record stored in a GAL dataset, and
which contains descriptive information about its contents.
In an indexed dataset, the descriptor is stored ahead of
the dataset proper, and is assigned record index 0. In a
nominal dataset, the descriptor may be stored anywhere.

An array of machine words characterized by physical ad-
jacency within a datasct, and identified by index, or (key,
index) pair.

See storage space.

A set of interrelated data objects viewed as a single logical
entity.

See dataset descriptor.
See I/0 device, logical device.

A process by which facilities assigned to a logical device
are released (returned) to the operating system. A freed
device is tnactive. If the device was opened as a scratch
device, its contents disappear.

See device opening.

A process by which for residence of a logical device are

A-3

Appendix A: GLOSSARY

Device option indexr (OPTX)

Device type index (TYPEX)

Direct-access storage

DMGASP

Dynamic

Ezxtent

Ezxternal device name

Ezternal file name

External PRU

Facilities
File

File name

Flushing (a data library)

requested to the operating system. An open device is said
to be active.

An index that characterizes permanency and accessibility
attributes of a logical device at time of opening.

An index that describes residence and granularity at-
tributes of a logical device at time of opening.

A type of storage that is capable of processing data at sep-
arate locations without passing over the intervening data.
Also known as random-access storage, connoting the prop-
erty that items of data can be stored or retrieved efficiently
in a random order.

The 1/O Manager implemented for NICE-DMS.

A qualifier applied to certain actions, such as the declara-
tion and freeing of storage facilities, which are performed
on command from a running program. (Contrast to static,
in which such actions are performed before or after run-
ning the program.)

A contiguously-addressed storage region; also the size of
any such region.

The symbolic identifier of a logical device given to the I/O
manager by the user program. For disk-resident devices,
this identifier contains the external file name, and often
is simply the file name. The external device name is only
used at device declaration time; from then on the device
is identified by its Logical Device Index ([.DI).

The identifier by which facilities for residence of a file
structure are requested to the operating system.

The Physical Record Unit (PRU) by which the user of the
1/O manager addresses a direct-access logical device.

Storage equipment available at a computer installation.
See logical file, physical file.

The identifier(s) by which a logical file is known to the
operating system.

The process of writing altered header/TOC buffers to a

A-4

Global Access Library (GAL)

Global database

Hardware PRU

Indezed record

Information

Information structure

I/O Deuvice

I/O Manager (IOM)

Internal file name

Internal PRU

Library

Local database

Local file

Location

814.9 SPECIFY ERROR TERMINATOR: GMETER

library file to ensure conformity of contents.

The standard data-library organization managed by GAL-
DBM. It is a direct-access file organization characterized
by word-addressing, data descriptors, VAX-like dataset
identifiers, indexed- or named-record access, and clear sep-
aration of logical and physical data description levels.

A database residing on permanent storage, and which is
accessible by a network of communicating programs.

A Physical Record Unit (PRU) that corresponds directly
to the mechanical and/or electronic access characteristics
of the storage mediun.

A dataset record identified by its position within the
dataset.

Quantifiable knowledge.

An organized collection of information viewed as a logical
entity.

A storage device connected to the central processor by a
data channel.

The component of a multilevel data management system
that is responsible for the access method.

The identifier by which a file structure is referenced by a

running program. It is linked to the external file name

(and the Logical Device Index) at time of opening.

The PRU size used by the /O manager for requesting
physical-record transfers. For Block 1/0 devices, it co-
incides with the hardware PRU. For FORTRAN 1/0 de-
vices, it is the Fixed Record Length declared for direct-
access devices.

See data library.

A database attached to a running program, and which
disappears when the program stops.

CDC terminology for temporary file.

An addressable component of a storage device.

A-5

Appendix A: GLOSSARY

Logical device

Logical Device Index (LDI)

Logical Device Table (LDT)

Logical file

Logical name
Logieal record

Logical unit

Main storage

Manager

Mass storage

Named record
Nominal dataset
Online storage
Open (a device)

Page Buffer Pool

Paged 1/0

A partition of an I/O device that is managed as a logical
entity for resource-allocation and administration purposes.
For auxiliary storage devices, the term is equivalent to
logical file.

An integer that identifies a logical device entered in the
Logical Device Table (LDT') of the 1/O manager.

A table of logical devices maintained by the 1/0O Manager.

The description mechanism by which logical devices re-
siding on auxiliary storage are managed by the operating
system.

DEC term for internal file name.

A record structure as seen by the applications program-
mer.

The mechanism by which the applications program(mer)
refers to a logical file.

Random-access storage facilities hardwired to the central
processing unit, and may be referenced by machine-code
addresses.

A software element that is primarily engaged in the ad-
ministration of computing resoturces.

CDC term for online, large-capacity auxiliary storage fa-
cilities allocatable for public use.

A dataset record identified by name.

A dataset that consists of named records.

Storage under direct control of the central processing unit.
See device opening.

An area of main storage set aside for the realization of
Paged 1,0.

An implementation of bulfered 1/0 in which data trans-
fers between the user-program workspace and an auxiliary
storage device take into account the presence of a Page
Buffer Pool in main storage.

A-6

Permanent file

Permanent file name (PFN)
Physical device name

Physical file

Physical record

Physical record unit (PRU)

Posttional dataset

Positioning (a device)

Random-access storage

Record

Record Access Table

Record Group

Scratch file

Sector

Sequential-access device

§14.9 SPECIFY ERROR TERMINATOR: GMETER

A file structure that survives the execution of the process
that created or modified it. A permanent file exists until
it is specifically deleted by its owner, or (if lapsed) by the
operating system.

CDC term for erternal file name of a catalogued file.
DEC term for erxternal file name

An area or set of areas of main or auxiliary storage man-
aged by reference to a common identifier.

A record structure as presented to the operating system
services.

The addressing unit “granule” for direct-access devices.
Varies according to usage level: see external PRU, hard-
ware PRU, miternal PRU., sector.

A dataset that consists of indexed records.

The insertion of a storage address into the Logical Device
Table to update the current device location.

See direct-access storage.

A set of data items characterized by physical adjacency,
which constitutes the basic transaction unit in the trans-
mission of data between main and auxiliary storage.

A directory of records held within a nominal dataset.

A set of named records of identical length and data type,
resident in the same nominal dataset, and which are iden-
tified by a common key and a nonempty cycle range.

A file structure that disappears when the process that cre-
ated it stops, or when the file is explicitly closed.

The smallest addressable unit by the operating system on
a rotating direct-access storage device such as drum or
disk. It may be a true equipment characteristic (in which
case it coincides with a hardware PRU) or the result of
simulation by the operating system.

A type of storage in which the data can be accessed only
by following the order in which it was stored.

AT

Appendix A: GLOSSARY

Spanned record

Storage

Storage address

Storage device

Storage peripheral

Storage space

Storage unit

Table of Contents (TOC)

Temporary file

Text dataset

Track

Unit

Volume

Word

A record built-up as a sequence of block writes, and which
can be read back as a single record with no internal gaps.

Any device that is capable of retaining information over a
period of time and of delivering it on request.

A label, name, or number that identifies the place at which
data are recorded on a storage device.

A subset of the storage facilities that is treated as an oper-
ational entity for purposes of allocating or releasing stor-
age resources during the execution of a run or process.

A readily detachable part of the storage facilities; for ex-
ample, a magnetic tape unit or a removable disk volume.

The region allocated or attributed to a storage device or
a logical partition thereof. The size of a storage resource.

See storage space.

A directory of datasets maintained in a data library. Phys-
ically, the TOC is a matrix-like arrangement of informa-
tion that is split into segments for paging purposes.

A file structure that disappears when the job that cre-
ated it terminates, or when its facilities are released. (On
many systems, temporary and scratch files are indistin-
guishable.)

A dataset that stores card-image information.

The portion of a mechanical storage device such a drum,
disk, or tape, which is accessible to a given read/write
station.

See logical unit, storage unit.

The storage space associated on a one-to-one basis with a
separable segment of the storage facilities; e.g., a magnetic
tape reel, mountable cartridge or disk drive.

The standard main-storage allocation unit for numeric
data. Conventionally, a word holds a single-precision
floating-point value. (However. this characterization is not
universally agreed upon in the world of minicomputers and
microcomputers.)

A-8

APPENDIX B
INDEX

Appendix B: INDEX

CLIP, 1-4, 3-3, 4-5
cycle
dataset, 3-2, 3-3, 3-4, 3-6
high, 5-4
low, 5-4
record, 5-2, 5-4, 5-6

database, 1-2, 2-6, 4-4, 5-5
global, 1-2, 1-4, 2-2, 2-5, 2-9, 5-2
local, 1-4
database manager
global, 1-2, 1-4
local, 1-4
dataset, 2-2, 2-4, 2-5, 4-2, 4-3
creation, 3-12
DAL conforming, 2-6, 4-5, 5-2
deletion, 3-10, 3-12
GAL conforming, 4-7, 5-2
lock codes, 3-10
locking, 3-10
nominal, 2-4, 2-6, 2-9, 2-10, 3-12, 4-3, 5-2,
5-6, 5-8

positional, 2-4, 2-6, 2-10, 3-12, 4-2, 4-3,
4-5, 4-7, 4-8, 5-2

sequence number, 3-9

storage, 2-10

text, 4-5

dataset name, 2-4, 2-9, 3-2, 3-3
break up operation, 10-5
construct operation, 10-9
masking, 3-4

dataset operations
copy and rename, 12-10
copy by name, 12-4
copy by sequence, 12-7
delete, 7-6
enable, 7-8
find, 7-10, 7-12
get name, 7-13
match name, 7-4
open, 7-20
put name, 7-21
rename, 7-25
reserve space, 7-23
set datatype code, 7-26
set lock code, 7-19

dataset state
deleted, 2-8, 3-10

-2

enabled, 3-10
locked, 3-10
datatype code
DAL, 4-5
external, 5-2
NIFTY, 5-2
device
core, 2-9
direct access, 1-2, 2-2, 4-3
name, 2-6, 2-8
scratch, 2-6
serial-access, 2-2
storage, 1-2, 2-6
word-addressable, 2-6
DMGASP, 1-2, 1-4, 2-6, 2-9, 4-3, 14-2

error
classification, 14-4
code, 14-5
diagnostics, 14-6—14-11
handling, 14-2, 14-4
I/0O status, 14-5
key, 14-5
messages, 14-2, 14-5
trace stack, 14-5

error handling operations
defuse fatal errors, 14-16
extract error information, 14-14
identify user subprogram, 14-12
retrieve 1/0 status, 14-15
specify error termination routine, 14-17
test error condition, 14-13

GAL-DBM, 1-2, 1-4, 1-5, 2-3, 2-4, 2-5, 2-6
2-8. 2-9, 3-4, 3-6, 3-7. 3-9, 4-2

4-3. 4-8, 4-10, 5-2, 5-6, 5-7, 14-2, 14-4

GMACRO. 10-4

GMATCH. 7-4

GMBUDN, t0-5

GMBURN, 10-7

GMCARN, 10-10

GMCDAT, 11-4

GMCLOS. 2-8, 6-4

GMCODN, 10-9

GMCOPN, 12-4

GMCOPR, 12-6

GMCOPS, 12-7

GMCOPZ. 12-9

GMCORD, 12-10

)

GMCORN, 10-10
GMDELD, 7-6
GMDENT, 7-6
GMDERT, 9-4
GMDEST, 7-6
GMEASY, 14-16
GMEINF, 14-14

§14.9 SPECIFY ERROR TERMINATOR: GMETER

GMSOCM, 10-15
GMTRAC, 8-12
GMTRAN, 8-12
GMTYPE, 7-26
GMUARN, 10-7
GMUDAT, 11-17
GMUSER, 14-12

GMENAB, 7-8 GMUXDN;, 10-5
GMENAD, 7-8 GMXGET, 13-4
GMETER, 14-17 GMXPUT, 13-5
GMFEND, 8-4
! 1/0 Manager. 1-2, 2-6, 2-8, 1-3, 4-8
gxgt%% 82.68 6-6 indexed record operations
e opy, 12-9
GMFORM, 11-6 g:::i)’end 8-4
gxgggi’ g:: find record, 8-6
GMGENT, 7-13 position and read characters, 8-9
GMGERK’ 1-1 7 position and read numerics, 8-9
GMGETC’ 0 8- position and write characters, 8-9
GMGETN’ 9-8 position and write numerics, 8-9
e print, 8-11
gﬁt%’slhsg transfer characters, 8-12
GMLINT’ . .15 transfer numerics, 8-12
, 7-
GMLIRT, 9-15 LDI, 2-.8
GMLIST, 7-15 limit, 2-8
GMLNAM, 11-12 range, 2-6
GMLOCK, 7-19 library
GMNAME, 11-11 close, 2-8

data, 1-2. 2-2, 2-4, 2-6, 2-8, 2-9
direct-access, 2-2

GMOPED, 7-20
GMOPEN, 2-8, 6-8

GMPACK, 2-8, 6-15 flush, 2-8

GMPOOL, 10-12 global access, 1-2
GMPORC, 8-9 header, 2-9
GMPORN, 8-9 open, 2-8
GMPOWC, 8-9 pack, 2-8
GMPOWN, 8-9 sequential-access, 2-2
GMPRIN, 9-16 library format, 2-6

DAL, 2-6, 2-7

IALSO, 2-6, 2-7

GALB2, 2-6, 2-7, 2-9
library operations

GMPUNT, 7-21
GMPUTC, 9-18
GMPUTN, 9-18
GMREDS, 7-23

GMREND, 7-25 close, 6-4
GMRENT, 7-25 flush, 6-6
GMRERT, 9-17 open, 6-8
GMREST, 7-25 pack, 6-15
GMSHOP, 8-11 LMDEDS. 11-5

LMERCD, 14-13
LMFEND. 8-1
LMFIND, 7-10

GMSHOR, 9-16
GMSIGN, 10-14

Appendix B: INDEX

LMFINE, 7-12
LMFINX, 7-12
LMFIRE, 8-6
LMIOST, 14-15
LMLIBS, 11-9
LMLOCK, 11-10
LMNODS,; 11-13
LMNORD, 11-14
LMNORK, 11-15
LMOPEN, 6-8
LMPORC, 8-9
LMPORN, 8-9
LMPOWC, 8-9
LMPOWN, 8-9
LMPUNT, 7-21
LMRECS, 11-14
LMTYPE, 11-16
Logical Device Index. See LDI.

macroprocessor flag, 6-4, 6-8
set operation, 10-4
messages
suppress operation, 10-15

named record operations
copy, 12-6
delete, 9-4
get, 9-8
get group cycles, 9-6
get key attributes, 9-7
print, 9-16
put, 9-18
rename, 9-17
Network of Interactive Computational Ele-
ments. See NICE,
NICE, 1-2, 1-4
NICE-DMS, 1-2

page huffer pool

declare operation, 10-12
palindrome, 2-5
processor signature

enter operation, 10-14
protection

dataset, 3-10
run-abort, 2-8
write, 2-8

RAT, 2-9
list operation, 9-15
record, 2-4
descriptor, 2-4, 4-5, 4-7, 4-8
group, 2-9, 5-4, 5-6, 5-8, 5-9
indexed, 1-5, 4-2, 4-3, 4-7, 4-8, 4-10, 5-2,
5-8
name, 2-5
named, 1-5, 2-4, 2-5, 4-2, 4-3, 5-2, 5-4, 5-6,
5-8, 5-9
Record Access Table. See RAT.
record name, 5-2, 9-8
break up operation, 10-7
construct operation, 10-10

Table of Contents. See TOC.
tables, 5-4, 5-5. 5-7, 5-8
text group. 13-2
text group operations
get, 13-4
put, 13-5
TOC, 2-3, 2-9, 2-10, 3-4, 3-6, 3-7, 3-10, 3-11,
3-12, 4-5, 4-8, 4-9, 5-8
list operation, 7-15
TOC retricve dataset information operations
creation date/time, 11-4
dataset name, 11-11
lock code, 11-10
number of record keys, 11-15
number of records, 11-14
record keys. 11-7
type code, 11-16
update date/time, 11-17
TOC retrieve library information operations
active library devices, 11-9
format, 11-6, 11-8
name, 11-12
number of datasets, 11-13
number of deleted datasets, 11-5

ORIGINAL PAGE IS
OF POOR QUALITY

NASA

T Aa e gohey
SEad g AL it o

Report Documentation Page

1. Report No.
NASA CR-178387

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

The Computational Structural Mechanics Testbed Architecture
Volume 1V - The Global-Database Manager GAL-DBM

5. Report Date
January 1989

6. Performing Organization Code

7. Author(s)
Mary A. Wright, Marc E. Regelbrugge, Carlos A. Felippa

8. Performing Organization Report No.

LMSC-D878511

9. Performing Organization Name and Address
Lockheed Missiles and Space Company, Inc.
Research and Development Division
3251 Hanover street
Palo Alto, California 94304

_‘B Work Unit No.
505-63-01-10

11. Contract or Grant No.

NAS1-18444

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

13. Type of Report and Period Covered

Contractor Report

l.f;.NSponsoring Agency Code

15. Supplementary Notes

Mary A. Wright and Marc E. Regelbrugge, Lockheed Missiles and Space Company, Inc., Research and
Development Division, 3251 Hanover Street, Palo Alto, CA 94304.

Carlos A. Felippa, Center for Space Structures and Controls, University of Colorado, Boulder, CO 80309-
0429.

Langley Technical Monitor: W. Jefferson Stroud

16. Abstract

This is the fourth of a set of five volumes which describe the software architecture for the Computational
Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed
Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the
command language interpreter (CLIP), and the data manager (GAL). Volumes I, II, and III (NASA
CR’s 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor
interface. Volumes IV and V (NASA CR’s 178387 and 178388, respectively) describe GAL and its low-
level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed
to control the flow of execution of processors written for NICE. Volume 1V describes the nominal-record
data management component of the NICE software. It is intended for all users.

17. Key Words (Suggested by Authors(s})
Structural analysis software

Command language interface software .
Data management software

18. Distribution Statement
Unclassified—-Unlimited

Subject Category 39

19. Security Classif.(of this report)
Unclassified

20. Security Classif.(of this page)
Unclassified

21. No. of Pages | 22. Price
207 Al10

NASA FORM 1626 ocrT s8¢

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

